Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; 1867(12): 130467, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37777092

RESUMO

BACKGROUND: The monogenean parasite Heterobothrium okamotoi only parasitizes the gills of Takifugu rubripes. In this study, we hypothesized that the carbohydrates contribute to high host specificity of H. okamotoi. METHODS: T. rubripes, T. niphobles, T. snyderi, and T. pardalis were used for UEA I staining of the gills and an in vivo challenge test against H. okamotoi. To examine the effect of l-fucose, an in vitro detachment test was conducted using the host's gills. Additionally, fucosylated proteins were isolated from the membrane proteins of T. niphobles gills. RESULTS: The location of l-fucoside and the infection dynamics in four species were correlated to some extent; H. okamotoi detached relatively quickly from T. niphobles possessing l-fucoside both on the surface of the gills and in certain types of cells, including mucus cells, but detached slowly from T. snyderi possessing l-fucoside in only certain types of cells, including mucus cells. Under the conditions examined, H. okamotoi exhibited minimal detachment from T. rubripes and T. pardalis, and l-fucoside was not detected. The significantly higher detachment rate of H. okamotoi from the host's gills incubated in l-fucose-containing medium compared with the controls suggests that l-fucose in the non-host gills induced detachment of H. okamotoi. Four fucosylated proteins, including mucin5AC-like, were identified as potential factors for the detachment of H. okamotoi. CONCLUSIONS: Fucosylated proteins covering the surface of non-host gills might contribute to H. okamotoi detachment. GENERAL SIGNIFICANCE: This research shows the possible involvement of oligosaccharides in the host specificity of monogenean parasites.


Assuntos
Trematódeos , Infecções por Trematódeos , Animais , Takifugu/parasitologia , Infecções por Trematódeos/parasitologia , Infecções por Trematódeos/veterinária , Brânquias/parasitologia , Fucose
2.
Proc Natl Acad Sci U S A ; 119(23): e2121469119, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35658077

RESUMO

Recent studies have revealed a surprising diversity of sex chromosomes in vertebrates. However, the detailed mechanism of their turnover is still elusive. To understand this process, it is necessary to compare closely related species in terms of sex-determining genes and the chromosomes harboring them. Here, we explored the genus Takifugu, in which one strong candidate sex-determining gene, Amhr2, has been identified. To trace the processes involved in transitions in the sex-determination system in this genus, we studied 12 species and found that while the Amhr2 locus likely determines sex in the majority of Takifugu species, three species have acquired sex-determining loci at different chromosomal locations. Nevertheless, the generation of genome assemblies for the three species revealed that they share a portion of the male-specific supergene that contains a candidate sex-determining gene, GsdfY, along with genes that potentially play a role in male fitness. The shared supergene spans ∼100 kb and is flanked by two duplicated regions characterized by CACTA transposable elements. These results suggest that the shared supergene has taken over the role of sex-determining locus from Amhr2 in lineages leading to the three species, and repeated translocations of the supergene underlie the turnover of sex chromosomes in these lineages. These findings highlight the underestimated role of a mobile supergene in the turnover of sex chromosomes in vertebrates.


Assuntos
Processos de Determinação Sexual , Takifugu , Animais , Elementos de DNA Transponíveis/genética , Evolução Molecular , Cromossomos Sexuais/genética , Processos de Determinação Sexual/genética , Takifugu/genética , Translocação Genética
3.
Arthropod Struct Dev ; 62: 101046, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33813213

RESUMO

Sea lice adhere to the body surface of host fish with a cephalothoracic sucker. Caligus adheres to this substrate using legs 2 and 3, and the action of cephalothoracic muscles. Lunules, small, paired, anterior sucker-like structures, have a vital function in the initial step of adhering and contain a unique endocuticule containing elements that may behave like active matter and serve as the actuating mechanism. Cuticular membranes bordering the cephalothorax have a unique endocuticule with an undulating dorsal surface and a smooth ventral surface. A high-speed camera revealed that this undulation likely facilitates rapid automatic application of the sucker to the substrate. The cuticular membranes on the posterior margin of the first exopodal segment of leg 2 have a specialized endocuticle with tubules each surrounded by fine fibers. This reinforcement helps them to generate a posteriorly-directed jet of water. Opening-closing of these membranes is controlled by postero-anterior motion of the distal exopodal segments of leg 2. The outer cuticular membrane of leg 3 is simple, presumably effected by powerful extrinsic muscles. The consistency of sucker morphology within Caligus implies a highly stereotyped attachment behavior that is effective across a remarkable variety of fishes.


Assuntos
Copépodes , Animais , Peixes
4.
J Parasitol ; 106(2): 276-282, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32294759

RESUMO

Heterobothrium okamotoi, a monogenean gill parasite, exhibits high host specificity for the tiger puffer, Takifugu rubripes, and it has been experimentally verified that the parasite cannot colonize either closely related species such as the grass puffer Takifugu niphobles or distantly related fish such as the red seabream Pagrus major. Previously, we demonstrated in T. rubripes that immunoglobulin M (IgM) with d-mannose affinity induced deciliation of the oncomiracidia, the first step of parasitism, indicating that the parasite utilizes the molecule as a receptor for infection. In the present study, we purified mannose-specific IgM from 2 nonhost species, T. niphobles and P. major, by affinity and gel-filtration chromatography techniques and compared their deciliation-inducing activity against H. okamotoi oncomiracidia. The IgM of the former showed activity, whereas the latter had no effect, suggesting that in addition to d-mannose-binding ability, the crystallizable fragment domain of IgM, which is not part of the antigen-binding domain, plays an important role in host recognition by the oncomiracidia, such as direct binding to the parasites. It also suggests that the host specificity of H. okamotoi is relatively low upon initial recognition, and the specificity is established by exclusion in nonhosts during a later stage.


Assuntos
Ectoparasitoses/veterinária , Doenças dos Peixes/parasitologia , Imunoglobulina M/fisiologia , Manose/imunologia , Platelmintos/imunologia , Takifugu/parasitologia , Sequência de Aminoácidos , Animais , Western Blotting , Cílios/imunologia , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/imunologia , Ectoparasitoses/imunologia , Ectoparasitoses/parasitologia , Eletroforese em Gel de Poliacrilamida , Doenças dos Peixes/imunologia , Expressão Gênica , Brânquias/parasitologia , Especificidade de Hospedeiro , Concentração de Íons de Hidrogênio , Imunoglobulina M/sangue , Imunoglobulina M/genética , Imunoglobulina M/isolamento & purificação , Mucosa/química , Mucosa/imunologia , Mucosa/parasitologia , Platelmintos/patogenicidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Takifugu/imunologia , Infecções por Trematódeos/imunologia , Infecções por Trematódeos/parasitologia , Infecções por Trematódeos/veterinária
5.
Front Chem ; 8: 98, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32161746

RESUMO

Both vertebrates and invertebrates display active innate immune mechanisms for defense against microbial infection, including diversified repertoires of soluble and cell-associated lectins that can effect recognition and binding to potential pathogens, and trigger downstream effector pathways that clear them from the host internal milieu. Galectins are widely distributed and highly conserved lectins that have key regulatory effects on both innate and adaptive immune responses. In addition, galectins can bind to exogenous ("non-self") carbohydrates on the surface of bacteria, enveloped viruses, parasites, and fungi, and function as recognition receptors and effector factors in innate immunity. Like most invertebrates, eastern oysters (Crassostrea virginica) and softshell clams (Mya arenaria) can effectively respond to most immune challenges through soluble and hemocyte-associated lectins. The protozoan parasite Perkinsus marinus, however, can infect eastern oysters and cause "Dermo" disease, which is highly detrimental to both natural and farmed oyster populations. The sympatric Perkinsus chesapeaki, initially isolated from infected M. arenaria clams, can also be present in oysters, and there is little evidence of pathogenicity in either clams or oysters. In this review, we discuss selected observations from our studies on the mechanisms of Perkinsus recognition that are mediated by galectin-carbohydrate interactions. We identified in the oyster two galectins that we designated CvGal1 and CvGal2, which strongly recognize P. marinus trophozoites. In the clam we also identified galectin sequences, and focused on one (that we named MaGal1) that also recognizes Perkinsus species. Here we describe the biochemical characterization of CvGal1, CvGal2, and MaGal1 with focus on the detailed study of the carbohydrate specificity, and the glycosylated moieties on the surfaces of the oyster hemocytes and the two Perkinsus species (P. marinus and P. chesapeaki). Our goal is to gain further understanding of the biochemical basis for the interactions that lead to recognition and opsonization of the Perkinsus trophozoites by the bivalve hemocytes. These basic studies on the biology of host-parasite interactions may contribute to the development of novel intervention strategies for parasitic diseases of biomedical interest.

6.
Genes (Basel) ; 10(12)2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31835491

RESUMO

Rapid radiation associated with phenotypic divergence and convergence provides an opportunity to study the genetic mechanisms of evolution. Here we investigate the genus Takifugu that has undergone explosive radiation relatively recently and contains a subset of closely-related species with a scale-loss phenotype. By using observations during development and genetic mapping approaches, we show that the scale-loss phenotype of two Takifugu species, T. pardalis Temminck & Schlegel and T. snyderi Abe, is largely controlled by an overlapping genomic segment (QTL). A search for candidate genes underlying the scale-loss phenotype revealed that the QTL region contains no known genes responsible for the evolution of scale-loss phenotype in other fishes. These results suggest that the genes used for the scale-loss phenotypes in the two Takifugu are likely the same, but the genes used for the similar phenotype in Takifugu and distantly related fishes are not the same. Meanwhile, Fgfrl1, a gene predicted to function in a pathway known to regulate bone/scale development was identified in the QTL region. Since Fgfr1a1, another memebr of the Fgf signaling pathway, has been implicated in scale loss/scale shape in fish distantly related to Takifugu, our results suggest that the convergence of the scale-loss phenotype may be constrained by signaling modules with conserved roles in scale development.


Assuntos
Escamas de Animais/fisiologia , Escamas de Animais/efeitos da radiação , Takifugu/genética , Adaptação Biológica/genética , Animais , Mapeamento Cromossômico , Peixes/genética , Fenótipo , Filogenia , Locos de Características Quantitativas/genética , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/metabolismo
7.
Mol Immunol ; 114: 553-560, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31521019

RESUMO

Cell surface display is a useful platform to examine the interactions between two proteins of interest, such as immune receptors and ligands. This technique is also useful for studies on the immune receptors of lower vertebrates and invertebrates. However, in many cases, the commonly used cell culture temperature is relatively high for proteins from such organisms. Since insect cells can be cultured at lower temperatures than many other cells, and since they are equipped with "quality control" system, which is advantageous for the presentation of properly folded proteins, we anticipated that the insect cell surface display system could be more suitable for that type of research. In the present study, multiple cloning site of the commercially available expression vector pIB/V5-His was modified, and whether this vector could be useful to present fish immune-related membrane proteins was investigated. Using this plasmid, fugu's CD8α and CC chemokine receptor 7 could be presented on the cell surface. The clones of the lamprey variable lymphocyte receptors obtained previously by the yeast surface display (YSD) system as hen's egg lysozyme (HEL) binders also could be presented on the cell surface and bound to HEL. These results suggest that functional immune-related membrane proteins can be presented on the insect cell surface, indicating that this system is useful for immunological studies on exothermal animals.


Assuntos
Membrana Celular/imunologia , Proteínas de Peixes/imunologia , Peixes/imunologia , Insetos/imunologia , Proteínas de Membrana/imunologia , Animais , Células Cultivadas , Galinhas/imunologia , Citometria de Fluxo/métodos , Lampreias/imunologia , Ligantes , Muramidase/imunologia , Receptores Imunológicos/imunologia
8.
Curr Biol ; 29(11): 1901-1909.e8, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31130458

RESUMO

Vertebrate sex development consists largely of two processes: "sex determination," the initial bifurcation of sexual identity, and "sex differentiation," which subsequently facilitates maleness or femaleness according to the sex determination signal. Steroid hormones promote multiple types of sexual dimorphism in eutherian mammals and avians [1-3], in which they are indispensable for proper sex differentiation. By contrast, in many poikilothermic vertebrates, steroid hormones have been proposed to be key players in sex determination as well as sex differentiation [4-8]. This hypothesis was introduced more than 50 years ago but has never been rigorously tested due to difficulties in discriminating the roles of steroids in sex determination and differentiation. We found that a missense SNP in the gene encoding the steroidogenic enzyme 17ß-hydroxysteroid dehydrogenase 1 (Hsd17b1) was perfectly associated with ZZ/ZW sex determination in Seriola fishes. Biochemical analyses revealed that a glutamate residue present specifically in Z-type HSD17B1 attenuated interconversion between 17-keto and 17ß-hydroxy steroids relative to the allelic product from the W chromosome, which harbors glycine at that position, by disrupting the hydrogen bond network between the steroid and the enzyme's catalytic residues. Hsd17b1 mRNA is constitutively expressed in undifferentiated and differentiating gonads of both genotypic sexes, whereas W-type mRNA is expressed only in genotypic females. Meanwhile, Cyp19a1 is predominantly expressed in differentiating ovary. We conclude that the combination of Hsd17b1 alleles determines sex by modulating endogenous estrogen levels in Seriola species. These findings strongly support the long-standing hypothesis on steroids in sex determination.


Assuntos
17-Hidroxiesteroide Desidrogenases/genética , Proteínas de Peixes/genética , Peixes/genética , Polimorfismo de Nucleotídeo Único , Diferenciação Sexual/genética , 17-Hidroxiesteroide Desidrogenases/química , 17-Hidroxiesteroide Desidrogenases/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Peixes/metabolismo , Peixes/crescimento & desenvolvimento , Fenótipo , Filogenia , Alinhamento de Sequência/veterinária , Processos de Determinação Sexual/genética
9.
PLoS One ; 13(1): e0190635, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29293639

RESUMO

There is increasing evidence for frequent turnover in sex chromosomes in vertebrates. Yet experimental systems suitable for tracing the detailed process of turnover are rare. In theory, homologous turnover is possible if the new sex-determining locus is established on the existing sex-chromosome. However, there is no empirical evidence for such an event. The genus Takifugu includes fugu (Takifugu rubripes) and its two closely-related species whose sex is most likely determined by a SNP at the Amhr2 locus. In these species, males are heterozygous, with G and C alleles at the SNP site, while females are homozygous for the C allele. To determine if a shift in the sex-determining locus occurred in another member of this genus, we used genetic mapping to characterize the sex-chromosome systems of Takifugu niphobles. We found that the G allele of Amhr2 is absent in T. niphobles. Nevertheless, our initial mapping suggests a linkage between the phenotypic sex and the chromosome 19, which harbors the Amhr2 locus. Subsequent high-resolution analysis using a sex-reversed fish demonstrated that the sex-determining locus maps to the proximal end of chromosome 19, far from the Amhr2 locus. Thus, it is likely that homologous turnover involving these species has occurred. The data also showed that there is a male-specific reduction of recombination around the sex-determining locus. Nevertheless, no evidence for sex-chromosome differentiation was detected: the reduced recombination depended on phenotypic sex rather than genotypic sex; no X- or Y-specific maker was obtained; the YY individual was viable. Furthermore, fine-scale mapping narrowed down the new sex-determining locus to the interval corresponding to approximately 300-kb of sequence in the fugu genome. Thus, T. niphobles is determined to have a young and small sex-determining region that is suitable for studying an early phase of sex-chromosome evolution and the mechanisms underlying turnover of sex chromosome.


Assuntos
Cromossomos Sexuais , Processos de Determinação Sexual , Takifugu/genética , Animais , Cruzamentos Genéticos , Feminino , Masculino , Filogenia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Recombinação Genética
10.
J Immunol ; 198(10): 4107-4114, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28404634

RESUMO

How parasites recognize their definitive hosts is a mystery; however, parasitism is reportedly initiated by recognition of certain molecules on host surfaces. Fish ectoparasites make initial contact with their hosts at body surfaces, such as skin and gills, which are covered with mucosa that are similar to those of mammalian guts. Fish are among the most primitive vertebrates with immune systems that are equivalent to those in mammals, and they produce and secrete IgM into mucus. In this study, we showed that the monogenean parasite Heterobothrium okamotoi utilizes IgM to recognize its host, fugu Takifugu rubripes Oncomiracidia are infective larvae of H. okamotoi that shed their cilia and metamorphose into juveniles when exposed to purified d-mannose-binding fractions from fugu mucus. Using liquid chromatography-tandem mass spectrometry analysis, proteins contained in the fraction were identified as d-mannose-specific IgM with two d-mannose-binding lectins. However, although deciliation was significantly induced by IgM and was inhibited by d-mannose or a specific Ab against fugu IgM, other lectins had no effect, and IgM without d-mannose affinity induced deciliation to a limited degree. Subsequent immunofluorescent staining experiments showed that fugu d-mannose-specific IgM binds ciliated epidermal cells of oncomiracidium. These observations suggest that deciliation is triggered by binding of fugu IgM to cell surface Ags via Ag binding sites. Moreover, concentrations of d-mannose-binding IgM in gill mucus were sufficient to induce deciliation in vitro, indicating that H. okamotoi parasites initially use host Abs to colonize host gills.


Assuntos
Imunoglobulina M/imunologia , Manose/metabolismo , Mucosa/imunologia , Takifugu/imunologia , Takifugu/parasitologia , Trematódeos/fisiologia , Animais , Afinidade de Anticorpos , Sítios de Ligação de Anticorpos , Cromatografia Líquida , Cílios/fisiologia , Brânquias/parasitologia , Imunidade nas Mucosas , Imunoglobulina M/metabolismo , Larva/imunologia , Larva/fisiologia , Manose/imunologia , Mucosa/parasitologia , Espectrometria de Massas em Tandem
11.
Dev Comp Immunol ; 59: 48-56, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26777033

RESUMO

Pufflectin found in Takifugu rubripes (Tr pufflectin) is the first animal lectin reported to show sequence similarity to monocotyledonous plant lectins. In the present study, we identified and characterized an orthologous lectin from Takifugu niphobles (Tn pufflectin), a species closely related to T. rubripes. Tn pufflectin exhibits 86% identity to Tr pufflectin with two conserved mannose-binding domains. Tn pufflectin was mainly expressed in the skin, gills, brain, and muscles; however, it was expressed at a lower level in the other examined tissues. Recombinant Tn pufflectin, expressed by Escherichia coli, exhibited binding activity specific for d-mannose. The expression of pufflectin in the gills was much lower in T. niphobles than in T. rubripes; notably, the former and latter are resistant and susceptible, respectively, to the monogenean parasite Heterobothrium okamotoi, which parasitizes gills. This suggests that pufflectin might be utilized by the parasite for host recognition.


Assuntos
Doenças dos Peixes/parasitologia , Brânquias/metabolismo , Brânquias/parasitologia , Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/metabolismo , Platelmintos/metabolismo , Takifugu/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Encéfalo/metabolismo , Músculos/metabolismo , Lectinas de Plantas/genética , Ligação Proteica , Alinhamento de Sequência , Pele/metabolismo , Takifugu/parasitologia
12.
Biochemistry ; 54(30): 4711-30, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26158802

RESUMO

Galectins are highly conserved lectins that are key to multiple biological functions, including pathogen recognition and regulation of immune responses. We previously reported that CvGal1, a galectin expressed in phagocytic cells (hemocytes) of the eastern oyster (Crassostrea virginica), is hijacked by the parasite Perkinsus marinus to enter the host, where it causes systemic infection and death. Screening of an oyster hemocyte cDNA library revealed a novel galectin, which we designated CvGal2, with four tandemly arrayed carbohydrate recognition domains (CRDs). Phylogentic analysis of the CvGal2 CRDs suggests close relationships with homologous CRDs from CvGal1. Glycan array analysis, however, revealed that, unlike CvGal1 which preferentially binds to the blood group A tetrasaccharide, CvGal2 recognizes both blood group A and B tetrasaccharides and related structures, suggesting that CvGal2 has broader binding specificity. Furthermore, SPR analysis demonstrated significant differences in the binding kinetics of CvGal1 and CvGal2, and structural modeling revealed substantial differences in their interactions with the oligosaccharide ligands. CvGal2 is homogeneously distributed in the hemocyte cytoplasm, is released to the extracellular space, and binds to the hemocyte surface. CvGal2 binds to P. marinus trophozoites in a dose-dependent and ß-galactoside-specific manner. Strikingly, negligible binding of CvGal2 was observed for Perkinsus chesapeaki, a sympatric parasite species mostly prevalent in the clams Mya arenaria and Macoma balthica. The differential recognition of Perkinsus species by the oyster galectins is consistent with their relative prevalence in oyster and clam species and supports their role in facilitating parasite entry and infectivity in a host-preferential manner.


Assuntos
Alveolados , Antígenos de Grupos Sanguíneos , Crassostrea , Galectinas , Oligossacarídeos , Filogenia , Alveolados/química , Alveolados/genética , Alveolados/metabolismo , Animais , Antígenos de Grupos Sanguíneos/química , Antígenos de Grupos Sanguíneos/genética , Antígenos de Grupos Sanguíneos/metabolismo , Crassostrea/química , Crassostrea/genética , Crassostrea/metabolismo , Crassostrea/parasitologia , Galectinas/química , Galectinas/genética , Galectinas/metabolismo , Hemócitos/química , Hemócitos/metabolismo , Hemócitos/parasitologia , Oligossacarídeos/química , Oligossacarídeos/genética , Oligossacarídeos/metabolismo
13.
Fish Shellfish Immunol ; 44(1): 356-64, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25731921

RESUMO

Caligus fugu is a parasitic copepod specific to the tetraodontid genus Takifugu including the commercially important Takifugu rubripes. Despite the rapid accumulation of knowledge on other aspects of its biology, the host and settlement-site recognition mechanisms of this parasite are not yet well understood. Since the infective copepodid stage shows preferential site selection in attaching to the fins, we considered it likely that the copepodid recognizes chemical cues released or leaking from the fins, and/or transmembrane protein present on the fins. To isolate molecules potentially related to attachment site specificity, we applied suppression subtractive hybridization (SSH) PCR by identifying genes expressed more highly in pectoral fins of T. rubripes than in the body surface skin. We sequenced plasmid DNA from 392 clones in a SSH library. The number of non-redundant sequences was 276, which included 135 sequences located on 117 annotated genes and 141 located in positions where no genes had been annotated. We characterized those annotated genes on the basis of gene ontology terms, and found that 46 of the identified genes encode secreted proteins, enzymes or membrane proteins. Among them nine showed higher expression in the pectoral fins than in the skin. These could be candidate genes for involvement in behavioral mechanisms related to the site specificity shown by the infective copepodids of C. fugu.


Assuntos
Nadadeiras de Animais/metabolismo , Copépodes , Ecossistema , Proteínas de Peixes/genética , Takifugu/genética , Animais , Copépodes/fisiologia , Interações Hospedeiro-Parasita , Reação em Cadeia da Polimerase , Pele/metabolismo , Técnicas de Hibridização Subtrativa , Takifugu/parasitologia
14.
Parasite ; 20: 42, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24165196

RESUMO

The complete life cycle of a pennellid copepod Peniculus minuticaudae Shiino, 1956 is proposed based on the discovery of all post-embryonic stages together with the post-metamorphic adult females infecting the fins of threadsail filefish Stephanolepis cirrhifer (Monacanthidae) cultured in a fish farm at Ehime Prefecture, Japan. The hatching stage was the infective copepodid. The life cycle of P. minuticaudae consists of six stages separated by moults: the copepodid, four chalimi and adult. In this study, the adult males were observed frequently in precopulatory amplexus with various stages of females however, copulation occurs only between adults. Fertilized pre-metamorphic adult females carrying spermatophores may detach from the host and settle again before undergoing massive differential growth into the post-metamorphic adult female. Comparison of the life cycle of P. minuticaudae has been made with three known pennellids: Lernaeocera branchialis (Linnaeus, 1767), Cardiodectes medusaeus (Wilson, 1908) and Lernaeenicus sprattae (Sowerby, 1806). Among the compared species, P. minuticaudae is the first ectoparasitic pennellid to be discovered to complete its life cycle on a single host without any change in infection site preferences between infective copepodid and fertilized pre-metamorphic female.


Assuntos
Copépodes/crescimento & desenvolvimento , Ectoparasitoses/veterinária , Doenças dos Peixes/parasitologia , Estágios do Ciclo de Vida , Tetraodontiformes/parasitologia , Animais , Copépodes/ultraestrutura , Ectoparasitoses/parasitologia , Feminino , Masculino , Microscopia Eletrônica de Varredura/veterinária , Caracteres Sexuais
15.
PLoS Genet ; 8(7): e1002798, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22807687

RESUMO

Heterogametic sex chromosomes have evolved independently in various lineages of vertebrates. Such sex chromosome pairs often contain nonrecombining regions, with one of the chromosomes harboring a master sex-determining (SD) gene. It is hypothesized that these sex chromosomes evolved from a pair of autosomes that diverged after acquiring the SD gene. By linkage and association mapping of the SD locus in fugu (Takifugu rubripes), we show that a SNP (C/G) in the anti-Müllerian hormone receptor type II (Amhr2) gene is the only polymorphism associated with phenotypic sex. This SNP changes an amino acid (His/Asp384) in the kinase domain. While females are homozygous (His/His384), males are heterozygous. Sex in fugu is most likely determined by a combination of the two alleles of Amhr2. Consistent with this model, the medaka hotei mutant carrying a substitution in the kinase domain of Amhr2 causes a female phenotype. The association of the Amhr2 SNP with phenotypic sex is conserved in two other species of Takifugu but not in Tetraodon. The fugu SD locus shows no sign of recombination suppression between X and Y chromosomes. Thus, fugu sex chromosomes represent an unusual example of proto-sex chromosomes. Such undifferentiated X-Y chromosomes may be more common in vertebrates than previously thought.


Assuntos
Substituição de Aminoácidos/genética , Receptores de Peptídeos/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Processos de Determinação Sexual/genética , Takifugu , Animais , Evolução Biológica , Feminino , Estudos de Associação Genética , Ligação Genética , Heterozigoto , Homozigoto , Masculino , Mutação de Sentido Incorreto/genética , Receptores de Peptídeos/fisiologia , Receptores de Fatores de Crescimento Transformadores beta/fisiologia , Cromossomos Sexuais/genética , Takifugu/genética , Takifugu/fisiologia
16.
Methods Mol Biol ; 748: 21-33, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21701964

RESUMO

The variable lymphocyte receptors (VLRs) of lamprey and hagfish comprise leucine-rich repeat modules, instead of the immunoglobulin-like domain building blocks of antibodies and T-cell receptors in jawed vertebrates. Both types of vertebrate-rearranging antigen receptors are similarly diverse, with repertoires that can potentially exceed 10(14) unique receptors. In order to characterize antigen-binding properties of the VLRs, we developed a high-throughput yeast surface display platform for the isolation of monoclonal VLRs. We have isolated VLRs that specifically bind hen egg lysozyme, ß-galactosidase, cholera toxin subunit B, R-phycoerythrin, and the blood group trisaccharides A and B, with binding affinities in the mid-nanomolar to mid-picomolar range. VLRs may, thus, be excellent single-chain alternatives to Ig-based antibodies for biotechnology applications.


Assuntos
Lampreias/metabolismo , Receptores de Antígenos/metabolismo , Leveduras/metabolismo , Animais , Toxina da Cólera/metabolismo , Lampreias/genética , Muramidase/metabolismo , Ligação Proteica , Receptores de Antígenos/genética , Leveduras/genética , beta-Galactosidase/metabolismo
17.
Proc Natl Acad Sci U S A ; 107(30): 13408-13, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20616002

RESUMO

Adaptive immunity in jawless vertebrates is mediated by leucine-rich repeat proteins called "variable lymphocyte receptors" (VLRs). Two types of VLR (A and B) are expressed by mutually exclusive lymphocyte populations in lamprey. VLRB lymphocytes resemble the B cells of jawed vertebrates; VLRA lymphocytes are similar to T cells. We determined the structure of a high-affinity VLRA isolated from lamprey immunized with hen egg white lysozyme (HEL) in unbound and antigen-bound forms. The VLRA-HEL complex demonstrates that certain VLRAs, like gammadelta T-cell receptors (TCRs) but unlike alphabeta TCRs, can recognize antigens directly, without a requirement for processing or antigen-presenting molecules. Thus, these VLRAs feature the nanomolar affinities of antibodies, the direct recognition of unprocessed antigens of both antibodies and gammadelta TCRs, and the exclusive expression on the lymphocyte surface that is unique to alphabeta and gammadelta TCRs.


Assuntos
Epitopos/imunologia , Linfócitos/imunologia , Petromyzon/imunologia , Proteínas/imunologia , Animais , Sítios de Ligação , Galinhas , Epitopos/química , Epitopos/metabolismo , Cinética , Proteínas de Repetições Ricas em Leucina , Linfócitos/metabolismo , Modelos Moleculares , Muramidase/química , Muramidase/imunologia , Muramidase/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas/química , Proteínas/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Linfócitos T/imunologia
18.
Proc Natl Acad Sci U S A ; 106(31): 12891-6, 2009 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-19625627

RESUMO

Lamprey are members of the ancestral vertebrate taxon (jawless fish), which evolved rearranging antigen receptors convergently with the jawed vertebrates. But instead of Ig superfamily domains, lamprey variable lymphocyte receptors (VLRs) consist of highly diverse leucine-rich repeats. Although VLRs represent the only known adaptive immune system not based on Ig, little is known about their antigen-binding properties. Here we report robust plasma VLRB responses of lamprey immunized with hen egg lysozyme and beta-galactosidase (beta-gal), demonstrating adaptive immune responses against soluble antigens. To isolate monoclonal VLRs, we constructed large VLR libraries from antigen-stimulated and naïve animals in a novel yeast surface-display vector, with the VLR C-terminally fused to the yeast Flo1p surface anchor. We cloned VLRB binders of lysozyme, beta-gal, cholera toxin subunit B, R-phycoerythrin, and B-trisaccharide antigen, with dissociation constants up to the single-digit picomolar range, equivalent to those of high-affinity IgG antibodies. We also isolated from a single lamprey 13 anti-lysozyme VLRA clones with affinities ranging from low nanomolar to mid-picomolar. All of these VLRA clones were closely related in sequence, differing at only 15 variable codon positions along the 244-residue VLR diversity region, which augmented antigen-binding affinity up to 100-fold. Thus, VLRs can provide a protective humoral antipathogen shield. Furthermore, the broad range of nominal antigens that VLRs can specifically bind, and the affinities achieved, indicate a functional parallelism between LRR-based and Ig-based antibodies. VLRs may be useful natural single-chain alternatives to conventional antibodies for biotechnology applications.


Assuntos
Anticorpos Monoclonais/imunologia , Afinidade de Anticorpos , Lampreias/imunologia , Proteínas/imunologia , Receptores de Antígenos/imunologia , Adaptação Fisiológica , Animais , Sequência de Bases , Proteínas de Repetições Ricas em Leucina , Dados de Sequência Molecular , Receptores de Antígenos/fisiologia
19.
Nat Struct Mol Biol ; 16(7): 725-30, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19543291

RESUMO

Variable lymphocyte receptors (VLRs) are leucine-rich repeat proteins that mediate adaptive immunity in jawless vertebrates. VLRs are fundamentally different from the antibodies of jawed vertebrates, which consist of immunoglobulin (Ig) domains. We determined the structure of an anti-hen egg white lysozyme (HEL) VLR, isolated by yeast display, bound to HEL. The VLR, whose affinity resembles that of IgM antibodies, uses nearly all its concave surface to bind the protein, in addition to a loop that penetrates into the enzyme active site. The VLR-HEL structure combined with sequence analysis revealed an almost perfect match between ligand-contacting positions and positions with highest sequence diversity. Thus, it is likely that we have defined the generalized antigen-binding site of VLRs. We further demonstrated that VLRs can be affinity-matured by 13-fold to affinities as high as those of IgG antibodies, making VLRs potential alternatives to antibodies for biotechnology applications.


Assuntos
Antígenos/química , Lampreias , Conformação Proteica , Proteínas/química , Proteínas/metabolismo , Receptores de Superfície Celular/química , Sequência de Aminoácidos , Animais , Antígenos/genética , Antígenos/metabolismo , Sítios de Ligação , Galinhas , Proteínas de Repetições Ricas em Leucina , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Muramidase/química , Muramidase/genética , Muramidase/imunologia , Proteínas/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...