Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834793

RESUMO

Precision medicine gives individuals tailored medical treatment, with the genotype determining the therapeutic strategy, the appropriate dosage, and the likelihood of benefit or toxicity. Cytochrome P450 (CYP) enzyme families 1, 2, and 3 play a pivotal role in eliminating most drugs. Factors that affect CYP function and expression have a major impact on treatment outcomes. Therefore, polymorphisms of these enzymes result in alleles with diverse enzymatic activity and drug metabolism phenotypes. Africa has the highest CYP genetic diversity and also the highest burden of malaria and tuberculosis, and this review presents current general information on CYP enzymes together with variation data concerning antimalarial and antituberculosis drugs, while focusing on the first three CYP families. Afrocentric alleles such as CYP2A6*17, CYP2A6*23, CYP2A6*25, CYP2A6*28, CYP2B6*6, CYP2B6*18, CYP2C8*2, CYP2C9*5, CYP2C9*8, CYP2C9*9, CYP2C19*9, CYP2C19*13, CYP2C19*15, CYP2D6*2, CYP2D6*17, CYP2D6*29, and CYP3A4*15 are implicated in diverse metabolic phenotypes of different antimalarials such as artesunate, mefloquine, quinine, primaquine, and chloroquine. Moreover, CYP3A4, CYP1A1, CYP2C8, CYP2C18, CYP2C19, CYP2J2, and CYP1B1 are implicated in the metabolism of some second-line antituberculosis drugs such as bedaquiline and linezolid. Drug-drug interactions, induction/inhibition, and enzyme polymorphisms that influence the metabolism of antituberculosis, antimalarial, and other drugs, are explored. Moreover, a mapping of Afrocentric missense mutations to CYP structures and a documentation of their known effects provided structural insights, as understanding the mechanism of action of these enzymes and how the different alleles influence enzyme function is invaluable to the advancement of precision medicine.


Assuntos
Antimaláricos , Humanos , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2C8/genética , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP3A/genética , Alelos , Citocromo P-450 CYP2B6/genética , Antituberculosos , Citocromo P-450 CYP2C9/genética , Sistema Enzimático do Citocromo P-450/metabolismo
2.
Molecules ; 27(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36235118

RESUMO

New drugs are urgently needed for the treatment of human African trypanosomiasis (HAT). In line with our quest for novel inhibitors of trypanosomes, a small library of analogs of the antitrypanosomal hit (MMV675968) available at MMV as solid materials was screened for antitrypanosomal activity. In silico exploration of two potent antitrypanosomal structural analogs (7-MMV1578647 and 10-MMV1578445) as inhibitors of dihydrofolate reductase (DHFR) was achieved, together with elucidation of other antitrypanosomal modes of action. In addition, they were assessed in vitro for tentative inhibition of DHFR in a crude trypanosome extract. Their ADMET properties were also predicted using dedicated software. Overall, the two diaminoquinazoline analogs displayed approximately 40-fold and 60-fold more potency and selectivity in vitro than the parent hit, respectively (MMV1578445 (10): IC50 = 0.045 µM, SI = 1737; MMV1578467 (7): IC50 = 0.06 µM; SI = 412). Analogs 7 and 10 were also strong binders of the DHFR enzyme in silico, in all their accessible protonation states, and interacted with key DHFR ligand recognition residues Val32, Asp54, and Ile160. They also exhibited significant activity against trypanosome protein isolate. MMV1578445 (10) portrayed fast and irreversible trypanosome growth arrest between 4-72 h at IC99. Analogs 7 and 10 induced in vitro ferric iron reduction and DNA fragmentation or apoptosis induction, respectively. The two potent analogs endowed with predicted suitable physicochemical and ADMET properties are good candidates for further deciphering their potential as starting points for new drug development for HAT.


Assuntos
Tripanossomicidas , Trypanosoma brucei brucei , Trypanosoma , Tripanossomíase Africana , Animais , Humanos , Ferro/uso terapêutico , Ligantes , Quinazolinas , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/metabolismo , Tripanossomicidas/química , Trypanosoma/metabolismo , Tripanossomíase Africana/tratamento farmacológico
3.
Molecules ; 25(4)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085470

RESUMO

In this era of precision medicine, insights into the resistance mechanism of drugs are integral for the development of potent therapeutics. Here, we sought to understand the contribution of four point mutations (N51I, C59R, S108N, and I164L) within the active site of the malaria parasite enzyme dihydrofolate reductase (DHFR) towards the resistance of the antimalarial drug pyrimethamine. Homology modeling was used to obtain full-length models of wild type (WT) and mutant DHFR. Molecular docking was employed to dock pyrimethamine onto the generated structures. Subsequent all-atom molecular dynamics (MD) simulations and binding free-energy computations highlighted that pyrimethamine's stability and affinity inversely relates to the number of mutations within its binding site and, hence, resistance severity. Generally, mutations led to reduced binding affinity to pyrimethamine and increased conformational plasticity of DHFR. Next, dynamic residue network analysis (DRN) was applied to determine the impact of mutations and pyrimethamine binding on communication dispositions of DHFR residues. DRN revealed residues with distinctive communication profiles, distinguishing WT from drug-resistant mutants as well as pyrimethamine-bound from pyrimethamine-free models. Our results provide a new perspective on the understanding of mutation-induced drug resistance.


Assuntos
Aminoácidos/química , Resistência a Medicamentos/efeitos dos fármacos , Pirimetamina/química , Pirimetamina/farmacologia , Domínio Catalítico , Ligantes , Simulação de Dinâmica Molecular , Mutação/genética , Plasmodium falciparum/enzimologia , Domínios Proteicos , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/metabolismo , Termodinâmica
4.
BMC Res Notes ; 10(1): 645, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29187241

RESUMO

OBJECTIVE: Anaemia is a serious problem in pregnancy in malaria-endemic countries. This study investigated red cell morphologies and possible causes of anaemia among pregnant women at first clinic visit. Venous blood samples from consented women were used to determine haemoglobin (Hb) levels, mean corpuscular volume (MCV) and mean corpuscular haemoglobin (MCH) using an automated haematology analyzer. Malaria parasitaemia was diagnosed by microscopy. Definitions were as follows: anaemia (Hb < 11.0 g/dl), microcytosis (MCV < 78 fl), macrocytosis (MCV > 101 fl), hypochromasia (MCH < 27 pg), microcytic hypochromia or normocytic hypochromia with anaemia [iron deficiency anaemia (IDA)], normocytic normochromia with anaemia in the absence of malaria parasitaemia (physiological anaemia of pregnancy). RESULTS: Of the 279 pregnant women enrolled, 57% had anaemia. Malaria parasitaemia was associated with 23.3% of anaemic cases while 76.7% were non-malaria related. The distribution of red cell alterations was as follows: hypochromasia (32.6%), microcytosis (14.7%) and macrocytosis (1.1%). The co-occurrence of malaria parasitaemia, iron deficiency and anaemia was seen in 23.3% of the women, iron deficiency anaemia only occurred in 35.9% while physiological anaemia of pregnancy was 40.9%. Iron deficiency and physiological anaemia of pregnancy contribute to a greater proportion of anaemia in the study area.


Assuntos
Anemia/sangue , Anemia/etiologia , Eritrócitos/patologia , Malária/complicações , Parasitemia/sangue , Complicações Hematológicas na Gravidez/sangue , Complicações Parasitárias na Gravidez/sangue , Adulto , Anemia/epidemiologia , Anemia/parasitologia , Camarões/epidemiologia , Estudos Transversais , Feminino , Humanos , Malária/sangue , Malária/epidemiologia , Parasitemia/epidemiologia , Gravidez , Complicações Hematológicas na Gravidez/epidemiologia , Complicações Hematológicas na Gravidez/parasitologia , Complicações Parasitárias na Gravidez/epidemiologia , Estudos Prospectivos , Adulto Jovem
5.
BMC Infect Dis ; 15: 439, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26494140

RESUMO

BACKGROUND: Pregnant women in malaria endemic areas are at high risk of P. falciparum infection and its complications. This study investigated the prevalence and risk factors for P. falciparum infection and malaria among pregnant women reporting for first antenatal care (ANC) clinic visit in the mount Cameroon area. METHODS: Venous blood samples from consented pregnant women were screened for malaria parasitaemia by light microscopy. Haemoglobin levels, white blood cell (WBC) counts, lymphocyte counts and percentage were determined using an automated haematology analyser. Socio-demographic/economic data, environmental factors and use of malaria control measures were documented. Univariate and multivariate statistical analyses were used. RESULTS: Sixty-eight (22.4%; N = 303) of the women enrolled were positive for P. falciparum parasitaemia. Malaria parasitaemia was significantly (P < 0.001) associated with febrile illness. The overall prevalence of malaria and asymptomatic infection was 16.0% (95% CI = 11-20%) and 10.5% (95% CI = 7.3-15%) respectively. A greater proportion of the malaria cases (61%) reported at the clinic during unscheduled days meanwhile women with asymptomatic parasitaemia mostly (92.8%) seek for ANC during scheduled clinic days. Lower lymphocyte percentage was significantly associated with increase parasite density (r = - 0.34; P = 0.011) and febrile status (MU = 2.46; P = 0.014). While age and gravidity were significant factors associated with P. falciparum infection and/or malaria, the presence of bush and/or standing water around human residence was an independent risk factor of P. falciparum parasitaemia (OR = 3.3: 95% CI = 1.6-7.0; P = 0.002) and malaria (OR = 5.2: 95% CI = 2.0-14; P = 0.001). Being unmarried was significantly associated with increase risk (OR = 2.6:95% CI = 1.1-6.0; P = 0.032) of P. falciparum parasitaemia. Similarly, single women (938) had a significantly higher (t = 2.70; P = 0.009) geometric mean parasite density (GMPD) compared with married women (338). CONCLUSION: Marital status and human residence in areas with bushes and/or standing water modify risk of P. falciparum infection and malaria. Education on early ANC attendance and environmental sanitation are important public health targets for malaria control in pregnancy in this setting.


Assuntos
Malária Falciparum/epidemiologia , Complicações Parasitárias na Gravidez/epidemiologia , Adolescente , Adulto , Assistência Ambulatorial , Camarões/epidemiologia , Estudos Transversais , Feminino , Humanos , Parasitemia/epidemiologia , Plasmodium falciparum/patogenicidade , Gravidez , Complicações Parasitárias na Gravidez/parasitologia , Cuidado Pré-Natal , Fatores de Risco , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...