Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1382399, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799169

RESUMO

Acute myeloid leukemia (AML) is a malignancy in the myeloid lineage that is characterized by symptoms like fatigue, bleeding, infections, or anemia, and it can be fatal if untreated. In AML, mutations in tyrosine kinases (TKs) lead to enhanced tumor cell survival. The most frequent mutations in TKs are reported in Fms-like tyrosine kinase 3 (FLT3), Janus kinase 2 (JAK2), and KIT (tyrosine-protein kinase KIT), making these TKs potential targets for TK inhibitor (TKI) therapies in AML. With 30% of the mutations in TKs, mutated FLT3 is associated with poor overall survival and an increased chance of resistance to therapy. FLT3 inhibitors are used in FLT3-mutant AML, and the combination with hypomethylating agents displayed promising results. Midostaurin (MDS) is the first targeted therapy in FLT3-mutant AML, and its combination with chemotherapy showed good results. However, chemotherapies induce several side effects, and an alternative to chemotherapy might be the use of nanoparticles for better drug delivery, improved bioavailability, reduced drug resistance and induced toxicity. The herein study presents MDS-loaded gold nanoparticles and compares its efficacy with MDS alone, on both in vitro and in vivo models, using the FLT3-ITD-mutated AML cell line MV-4-11 Luc2 transfected to express luciferin. Our preclinical study suggests that MDS-loaded nanoparticles have a better tumor inhibitory effect than free drugs on in vivo models by controlling tumor growth in the first half of the treatment, while in the second part of the therapy, the tumor size was comparable to the cohort that was treatment-free.

2.
Analyst ; 148(17): 3992-4001, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37526256

RESUMO

Colloidal nanoparticles exhibiting anisotropic morphologies are preferred in the structural design of spectroscopically active substrates due to the remarkable optical properties of this type of nano-object. In the particular case of star-like nanoparticles, their sharp tips can act as antennae for capturing and amplifying the incident light, as well as for enhancing the light emitted by nearby fluorophores or the scattering efficiency of Raman active molecules. In the current work, we aimed to implement such star-shaped nanoparticles in the fabrication of nanoparticle films and explore their use as solid plasmonic substrates for surface-enhanced optical spectroscopies. High-density, compact and robust self-assembled gold nanostar films were prepared by directly depositing them from aqueous colloidal suspension on polystyrene plates through convective self-assembly. We investigated the role of the polymeric coating, herein polyvinylpyrrolidone (PVP), in the particle assembly process, the resulting morphology and consequently, the plasmonic response of the obtained films. The efficacy of the plasmonic films as dual-mode surface-enhanced fluorescence (SEF) and surface-enhanced Raman scattering (SERS) substrates was evidenced by testing Nile Blue A (NB) and Rhodamine 800 (Rh800) molecular chromophores under visible (633 nm) versus NIR (785 nm) laser excitation. Steady-state and time-resolved fluorescence investigations highlight the fluorescence intensity and fluorescence lifetime modification effects. The experimental results were corroborated with theoretical modelling by finite-difference time-domain (FDTD) simulations. Furthermore, to prove the extended applicability of the proposed substrates in the detection of biologically relevant molecules, we tested their SERS efficiency for sensing metanephrine, a metabolite currently used for the biochemical diagnosis of neuroendocrine tumors, at concentration levels similar to other catecholamine metabolites.

3.
J Funct Biomater ; 14(8)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37623644

RESUMO

Tyrosine kinase inhibitor (TKI) therapy is gaining attraction in advanced cancer therapeutics due to the ubiquity of kinases in cell survival and differentiation. Great progress was made in the past years in identifying tyrosine kinases that can function as valuable molecular targets and for the entrapment of their corresponding inhibitors in delivery compounds for triggered release. Herein we present a class of drug-delivery nanocompounds based on TKI Midostaurin-loaded gold nanoparticles that have the potential to be used as theranostic agents for the targeting of the FMS-like tyrosine kinase 3 (FLT3) in acute myeloid leukemia. We optimized the nanocompounds' formulation with loading efficiency in the 84-94% range and studied the drug release behavior in the presence of stimuli-responsive polymers. The therapeutic activity of MDS-loaded particles, superior to that of the free drug, was confirmed with toxicities depending on specific dosage ranges. No effect was observed on FLT3-negative cells or for the unloaded particles. Beyond druggability, we can track this type of nanocarrier inside biological structures as demonstrated via dark field microscopy. These properties might contribute to the facilitation of personalized drug dosage administration, critical for attaining a maximal therapeutic effect.

4.
Colloids Surf B Biointerfaces ; 218: 112730, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35932559

RESUMO

Future-oriented material fabrication technologies would aim to reproduce features characteristic to the natural materials into the synthetic ones. Various bio-mimicking strategies can be already used in medical industry since they can mimic the desired surface design with the help of surface patterning techniques. In this review, we highlight the most common patterning methodologies employed for the fabrication of polymeric substrates having micro or nano-features by presenting their advantages and potential utility for applications in the biomedical field. Top-down and bottom-up fabrication techniques including lithographic approaches such as photolithography, electron, proton, ion beam and block copolymer lithography, soft lithography and some advanced methods as scanning probe and particle lithography are firstly described, followed by a brief presentation of the alternative patterning techniques using biomolecule crystallization or DNA self-assembly. The potential use of synthetic- and bio-polymer patterned substrates and the so-far reported studies including analysis of molecule and cell-interface interactions, cell development, migration and differentiation are further described with emphasis onto their implementation on circulating blood cells and blood disorders. The last chapter summarizes the results found regarding the advantages of using such substrates as component parts in biosensing devices, with foreseen applicability in medical diagnosis and the clinical healthcare domain.


Assuntos
Nanotecnologia , Prótons , Comunicação Celular , DNA , Nanotecnologia/métodos , Polímeros
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 273: 121069, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35231760

RESUMO

Nanosensors represent a class of emerging promising nanotools that can be used for the rapid, sensitive and specific detection of relevant molecules such as biomarkers of cancer or other diseases. The sensing platforms that rely on the exceptional physical properties of colloidal gold nanoparticles have gained a special attraction and various architectural designs were proposed with the aim of rapid and real-time detection, identification and monitoring of the capturing events. Moreover, biomarker sensing in liquid samples allows a more facile implementation of the nanosensors by circumventing the need for invasive practices such as biopsies, in favor of non-invasive investigations with potential for use as point-of-care assays. Herein, we propose a sandwich-type surface enhanced Raman scattering (SERS) immuno-nanosensor which is aimed for detecting and quantifying Carcinoembryonic antigen-related cell adhesion molecule 5 (CEA-CAM5), a protein involved in intercellular adhesion and signaling pathways that acts as a tumor marker in several types of cancer. For constructing the proposed system, colloidal gold nano spheres (GNS) and gold nano-urchins (GNU) were chemically synthesized, labeled with SERS active molecules, conjugated with polymers, functionalized with antibodies as capturing substrates and tested in two different sensing configurations: pairs of GNUs-GNUs and GNUs-GNSs. When the target antigen is present in the analyte solution, nanoparticle bridging occurs and a subsequent amplification of the characteristic Raman signal of the label molecule appears due to the formation of hot-spots in interparticle gaps. The capability of observing small analyte concentrations in liquid samples with an easy-to-handle portable Raman device makes the proposed system feasible for rapid, non-invasive and cost-effective clinical or laboratory use.


Assuntos
Nanopartículas Metálicas , Anticorpos , Ouro , Nanopartículas Metálicas/química , Polímeros/química , Análise Espectral Raman
6.
Nanoscale ; 13(29): 12443-12453, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34251385

RESUMO

We study the interaction between one aptamer and its analyte (the MnSOD protein) by the combination of surface-enhanced Raman scattering and multivariate statistical analysis. We observe the aptamer structure and its evolution during the interaction under different experimental conditions (in air or in buffer). Through the spectral treatment by principal component analysis of a large set of SERS data, we were able to probe the aptamer conformations and orientations relative to the surface assuming that the in-plane nucleoside modes are selectively enhanced. We demonstrate that the aptamer orientation and thus its flexibility rely strongly on the presence of a spacer of 15 thymines and on the experimental conditions with the aptamer lying on the surface in air and standing in the buffer. We reveal for the first time that the interaction with MnSOD induces a large loss of flexibility and freezes the aptamer structure in a single conformation.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Análise Espectral Raman
7.
Nanotechnology ; 31(31): 315102, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32315999

RESUMO

Nowadays, extensive research is being carried out to find innovative solutions for the development of stable, reproductible, and highly efficient fluorescent contrast agents with the ability of targeting specific cells, which can be further implemented for fluorescent-guided surgery in a real clinical setting. The present study is focused on the development of fluorescent dye-loaded protein nanoparticles (NPs) to overcome the drawbacks of the standard administration of free organic fluorophores, such as cytotoxicity, aqueousinstability, and rapid photo-degradation. Precisely, human serum albumin (HSA) NPs loaded with two different FDA approved dyes, namely indocyanine green (ICG) and fluorescein isothiocyanate (FITC), with a fluorescence response in the near-infrared and visible spectral domains, respectively, have been successfully designed. Even though the diameter of fluorescent HSA NPs is around 30 nm as proven by dynamic light scattering and transmission electron microscopy investigations, they present good loading efficiencies of almost 50% for ICG, and over 30% for FITC and a high particle yield of over 75%. Molecular docking simulations of ICG and FITC within the structure of HSA confirmed that the dyes were loaded inside the NPs, and docked in Site I (subdomain IIA) of the HSA molecule. After the confirmation of their high fluorescence photostability, the NPs were covalently conjugated with folic acid (HSA-FA NPs) in order to bind specifically to the folate receptor alpha (FRα) protein overexpressed on NIH:OVCAR3 ovarian cancer cells. Finally, fluorescence microscopy imaging investigations validate the improved internalization of folate targeted HSA&FITC NPs compared to cells treated with untargeted ones. Furthermore, TEM examinations of the distribution of HSA NPs into the NIH:OVCAR3 cells revealed anincreased number of NP-containing vesicles for the cells treated with HSA-FA NPs, compared to the cells exposed to untargeted HAS NPs, upholding the enhanced cellular uptake through FRα-mediated potocytosis.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Corantes Fluorescentes/química , Ácido Fólico/farmacologia , Neoplasias Ovarianas/metabolismo , Albumina Sérica Humana/química , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Fluoresceína-5-Isotiocianato/química , Ácido Fólico/química , Humanos , Verde de Indocianina/química , Simulação de Acoplamento Molecular , Nanopartículas , Regulação para Cima
8.
Colloids Surf B Biointerfaces ; 184: 110478, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31541890

RESUMO

The incidence of Acute Lymphoblastic Leukemia (ALL) is increasing globally, and it is being clinically addressed by chemotherapy, followed by immunotherapy and stem cell transplantation, all with potential life-threatening toxicities. In the need for more effective therapeutics, newly developed disease-targeted nanocompounds can thus hold real potential. In this paper, we propose a novel nanoparticle-based immunotherapeutic agent against ALL, consisting of antiCD19 antibody-conjugated, polyethylene glycol (PEG)-biocompatibilized, and Nile Blue (NB) Raman reporter-tagged gold nanoparticles of urchin-like shape (GNUs), that have a plasmonic response in the Near Infrared (NIR) spectral range. Transmission electron microscopy (TEM) images of particle-incubated CD19-positive (CD19(+)) CCRF-SB cells show that the antiCD19-PEG-NB-GNU nanocomplex is able to recognize the CD19 B-cell-specific antigen, which is a prerequisite for targeted therapy. The therapeutic effect of the particles is confirmed by cell counting, combined with cell cycle analysis by flow cytometry and MTS assay, which additionally offer insights into their mechanisms of action. Specifically, antiCD19-PEG-NB-GNUs proved superior cytotoxic effect against CCRF-SB cells when compared with the free antibody, by reducing the overall viability below 18% after 7 days treatment at a particle-bound antibody concentration of 0.17 ng/µl. Moreover, by combining their remarkable plasmonic properties with the possibility of Raman tagging, the proposed nanoparticles can also serve as spectroscopic imaging agents inside living cells, which validates their theranostic potential in the field of hematological oncology.


Assuntos
Antígenos CD19/imunologia , Ouro/química , Imunoconjugados/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Imunoconjugados/química , Imunoterapia/métodos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Oxazinas/química , Polietilenoglicóis/química , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Análise Espectral Raman
9.
ACS Appl Mater Interfaces ; 9(25): 21155-21168, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28574250

RESUMO

In this Research Article, we propose a new class of contrast agents for the detection and multimodal imaging of CD19(+) cancer lymphoblasts. The agents are based on NIR responsive hollow gold-silver nanospheres conjugated with antiCD19 monoclonal antibodies and marked with Nile Blue (NB) SERS active molecules (HNS-NB-PEG-antiCD19). Proof of concept experiments on specificity of the complex for the investigated cells was achieved by transmission electron microscopy (TEM). The microspectroscopic investigations via dark field (DF), surface-enhanced Raman spectroscopy (SERS), and two-photon excited fluorescence lifetime imaging microscopy (TPE-FLIM) corroborate with TEM and demonstrate successful and preferential internalization of the antibody-nanocomplex. The combination of the microspectroscopic techniques enables contrast and sensitivity that competes with more invasive and time demanding cell imaging modalities, while depth sectioning images provide real time localization of the nanoparticles in the whole cytoplasm at the entire depth of the cells. Our findings prove that HNS-NB-PEG-antiCD19 represent a promising type of new contrast agents with great possibility of being detected by multiple, non invasive, rapid and accessible microspectroscopic techniques and real applicability for specific targeting of CD19(+) cancer cells. Such versatile nanocomplexes combine in one single platform the detection and imaging of cancer lymphoblasts by DF, SERS, and TPE-FLIM microspectroscopy.


Assuntos
Nanopartículas Metálicas , Linhagem Celular Tumoral , Ouro , Humanos , Nanosferas , Prata , Análise Espectral Raman
10.
J Control Release ; 238: 123-138, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27460684

RESUMO

Acute lymphoblastic leukemia (ALL) is the malignancy with the highest incidence amongst children (26% of all cancer cases), being surpassed only by the cancers of the brain and of the nervous system. The most recent research on ALL is focusing on new molecular therapies, like targeting specific biological structures in key points in the cell cycle, or using selective inhibitors for transmembranary proteins involved in cell signalling, and even aiming cell surface receptors with specifically designed antibodies for active targeting. Nanomedicine approaches, especially by the use of nanoparticle-based compounds for the delivery of drugs, cancer diagnosis or therapeutics may represent new and modern ways in the near future anti-cancer therapies. This review offers an overview on the recent role of nanomedicine in the detection and treatment of acute lymphoblastic leukemia as resulting from a thorough literature survey. A short introduction on the basics of ALL is presented followed by the description of the conventional methods used in the ALL detection and treatment. We follow our discussion by introducing some of the general nano-strategies used for cancer detection and treatment. The detailed role of organic and inorganic nanoparticles in ALL applications is further presented, with a special focus on gold nanoparticle-based nanocarriers of antileukemic drugs.


Assuntos
Nanomedicina/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Animais , Sistemas de Liberação de Medicamentos/métodos , Humanos , Nanopartículas/química , Nanopartículas/uso terapêutico , Nanotecnologia/métodos , Pesquisa Translacional Biomédica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...