Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(4)2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-37107560

RESUMO

The small nuclear RNAs 4.5SH and 4.5SI were characterized only in mouse-like rodents; their genes originate from 7SL RNA and tRNA, respectively. Similar to many genes transcribed by RNA polymerase III (pol III), the genes of 4.5SH and 4.5SI RNAs include boxes A and B, forming an intergenic pol III-directed promoter. In addition, their 5'-flanking sequences have TATA-like boxes at position -31/-24, also required for efficient transcription. The patterns of the three boxes notably differ in the 4.5SH and 4.5SI RNA genes. The A, B, and TATA-like boxes were replaced in the 4.5SH RNA gene with the corresponding boxes in the 4.5SI RNA gene to evaluate their effect on the transcription of transfected constructs in HeLa cells. Simultaneous replacement of all three boxes decreased the transcription level by 40%, which indicates decreased promoter activity in a foreign gene. We developed a new approach to compare the promoter strength based on the competition of two co-transfected gene constructs when the proportion between the constructs modulates their relative activity. This method demonstrated that the promoter activity of 4.5SI is 12 times that of 4.5SH. Unexpectedly, the replacement of all three boxes of the weak 4.5SH promoter with those of the strong 4.5SI gene significantly reduced, rather than enhanced, the promoter activity. Thus, the strength of a pol III-directed promoter can depend on the nucleotide environment of the gene.


Assuntos
Nucleotídeos , RNA Polimerase III , Humanos , Camundongos , Animais , Células HeLa , RNA Polimerase III/genética , Regiões Promotoras Genéticas , RNA , Roedores/genética
2.
Int J Mol Sci ; 21(10)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466110

RESUMO

tRNA and some other non-coding RNA genes are transcribed by RNA polymerase III (pol III), due to the presence of intragenic promoter, consisting of boxes A and B spaced by 30-40 bp. Such pol III promoters, called type 2, are also intrinsic to Short Interspersed Elements (SINEs). The contribution of 5'-flanking sequences to the transcription efficiency of genes containing type 2 promoters is still studied insufficiently. Here, we studied this issue, focusing on the genes of two small non-coding RNAs (4.5SH and 4.5SI), as well as B1 and B2 SINEs from the mouse genome. We found that the regions from position -31 to -24 may significantly influence the transcription of genes and SINEs. We studied the influence of nucleotide substitutions in these sites, representing TATA-like boxes, on transcription of 4.5SH and 4.5SI RNA genes. As a rule, the substitutions of A and T to G or C reduced the transcription level, although the replacement of C with A also lowered it. In 4.5SH gene, five distal nucleotides of -31/-24 box (TTCAAGTA) appeared to be the most important, while in the box -31/-24 of 4.5SI gene (CTACATGA), all nucleotides, except for the first one, contributed significantly to the transcription efficiency. Random sequences occurring at positions -31/-24 upstream of SINE copies integrated into genome, promoted their transcription with different efficacy. In the 5'-flanking sequences of 4.5SH and 4.5SI RNA genes, the recognition sites of CREB, C/EBP, and Sp1 factors were found, and their deletion decreased the transcription.


Assuntos
RNA Polimerase III/metabolismo , TATA Box , Animais , Sequência Consenso , Células HeLa , Humanos , Camundongos , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Elementos Nucleotídeos Curtos e Dispersos , Fatores de Transcrição/metabolismo
3.
Cancer Lett ; 467: 96-106, 2019 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-31326556

RESUMO

Tumor-associated antigen (TAA)-specific autoantibodies have been widely implicated in cancer diagnosis. However, cancer cell lines that are typically exploited as candidate TAA sources in immunoproteomic studies may fail to accurately represent the autoantigen-ome of lower-grade neoplasms. Here, we established an integrated strategy for the identification of disease-relevant TAAs in thyroid neoplasia, which combined NRASQ61R oncogene expression in non-tumorous thyroid Nthy-ori 3-1 cells with a multi-dimensional proteomic technique DISER that consisted of profiling NRASQ61R-induced proteins using 2-dimensional difference gel electrophoresis (2D-DIGE) coupled with serological proteome analysis (SERPA) of the TAA repertoire of patients with thyroid encapsulated follicular-patterned/RAS-like phenotype (EFP/RLP) tumors. We identified several candidate cell-based (nicotinamide phosphoribosyltransferase NAMPT, glutamate dehydrogenase GLUD1, and glutathione S-transferase omega-1 GSTO1) and autoantibody (fumarate hydratase FH, calponin-3 CNN3, and pyruvate kinase PKM autoantibodies) biomarkers, including NRASQ61R-induced TAA phosphoglycerate kinase 1 PGK1. Meta-profiling of the reactivity of the identified autoantibodies across an independent SERPA series implicated the PKM autoantibody as a histological phenotype-independent biomarker of thyroid malignancy (11/38 (29%) patients with overtly malignant and uncertain malignant potential (UMP) tumors vs 0/22 (p = 0.0046) and 0/20 (p = 0.011) patients with non-invasive EFP/RLP tumors and healthy controls, respectively). PGK1 and CNN3 autoantibodies were identified as EFP/RLP-specific biomarkers, potentially suitable for further discriminating tumors with different malignant potential (PGK1: 7/22 (32%) patients with non-invasive EFP/RLP tumors vs 0/38 (p = 0.00044) and 0/20 (p = 0.0092) patients with other tumors and healthy controls, respectively; СNN3: 9/29 (31%) patients with malignant and borderline EFP/RLP tumors vs 0/31 (p = 0.00068) and 0/20 (p = 0.0067) patients with other tumors and healthy controls, respectively). The combined use of PKM, CNN3, and PGK1 autoantibodies allowed the reclassification of malignant/UMP tumor risk in 19/41 (46%) of EFP/RLP tumor patients. Taken together, we established an experimental pipeline DISER for the concurrent identification of cell-based and TAA biomarkers. The combination of DISER with in vitro oncogene expression allows further targeted identification of oncogene-induced TAAs. Using this integrated approach, we identified candidate autoantibody biomarkers that might be of value for differential diagnostic purposes in thyroid neoplasia.


Assuntos
Autoanticorpos/metabolismo , GTP Fosfo-Hidrolases/genética , Proteínas de Membrana/genética , Proteômica/métodos , Neoplasias da Glândula Tireoide/diagnóstico , Biomarcadores Tumorais/metabolismo , Estudos de Casos e Controles , Linhagem Celular Tumoral , Detecção Precoce de Câncer , Feminino , GTP Fosfo-Hidrolases/imunologia , Humanos , Proteínas de Membrana/imunologia , Mutação , Neoplasias da Glândula Tireoide/imunologia
4.
Genome ; 61(5): 367-370, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29394492

RESUMO

Short nuclear 4.5SI RNA can be found in three related rodent families. Its function remains unknown. The genes of 4.5SI RNA contain an internal promoter of RNA polymerase III composed of the boxes A and B. Here, the effect of the sequence immediately upstream of the mouse 4.5SI RNA gene on its transcription was studied. The gene with deletions and substitutions in the 5'-flanking sequence was used to transfect HeLa cells and its transcriptional activity was evaluated from the cellular level of 4.5SI RNA. Single-nucleotide substitutions in the region adjacent to the transcription start site (positions -2 to -8) decreased the expression activity of the gene down to 40%-60% of the control. The substitution of the conserved pentanucleotide AGAAT (positions -14 to -18) could either decrease (43%-56%) or increase (134%) the gene expression. A TATA-like box (TACATGA) was found at positions -24 to -30 of the 4.5SI RNA gene. Its replacement with a polylinker fragment of the vector did not decrease the transcription level, while its replacement with a GC-rich sequence almost completely (down to 2%-5%) suppressed the transcription of the 4.5SI RNA gene. The effect of plasmid sequences bordering the gene on its transcription by RNA polymerase III is discussed.


Assuntos
Região 5'-Flanqueadora , RNA Polimerase III/genética , RNA Nuclear Pequeno/genética , Deleção de Sequência , Transcrição Gênica , Animais , Sequência de Bases , Células HeLa , Humanos , Camundongos , Plasmídeos/química , Plasmídeos/metabolismo , Mutação Puntual , Regiões Promotoras Genéticas , RNA Polimerase III/metabolismo , RNA Nuclear Pequeno/metabolismo , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Sítio de Iniciação de Transcrição , Transfecção
5.
Gene ; 602: 50-56, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-27876533

RESUMO

IL2RA gene encodes the alpha subunit of a high-affinity receptor for interleukin-2 which is expressed by several distinct populations of lymphocytes involved in autoimmune processes. A large number of polymorphic alleles of the IL2RA locus are associated with the development of various autoimmune diseases. With bioinformatics analysis we the dissected the first intron of the IL2RA gene and selected several single nucleotide polymorphisms (SNPs) that may influence the regulation of the IL2RA gene in cell types relevant to autoimmune pathology. We described five enhancers containing the selected SNPs that stimulated activity of the IL2RA promoter in a cell-type specific manner, and tested the effect of specific SNP alleles on activity of the respective enhancers (E1 to E5, labeled according to the distance to the promoter). The E4 enhancer with minor T variant of rs61839660 SNP demonstrated reduced activity due to disrupted binding of MEF2A/C transcription factors (TFs). Neither rs706778 nor rs706779 SNPs, both associated with a number of autoimmune diseases, had any effect on the activity of the enhancer E2. However, rare variants of several SNPs (rs139767239, rs115133228, rs12722502, rs12722635) genetically linked to either rs706778 and/or rs706779 significantly influenced the activity of E1, E3 and E5 enhancers, presumably by disrupting EBF1, GABPA and ELF1 binding sites.


Assuntos
Subunidade alfa de Receptor de Interleucina-2/genética , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Linhagem Celular , Elementos Facilitadores Genéticos , Predisposição Genética para Doença , Humanos , Íntrons , Células Jurkat , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fatores de Transcrição/metabolismo
6.
Gene ; 587(1): 33-41, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27085482

RESUMO

4.5SH and 4.5SI RNA are two abundant small non-coding RNAs specific for several related rodent families including Muridae. These RNAs have a number of common characteristics such as the short length (about 100nt), transcription by RNA polymerase III, and origin from Short Interspersed Elements (SINEs). However, their stabilities in cells substantially differ: the half-life of 4.5SH RNA is about 20min, while that of 4.5SI RNA is 22h. Here we studied the influence of cell stress such as heat shock or viral infection on these two RNAs. We found that the level of 4.5SI RNA did not change in stressed cells; whereas heat shock increased the abundance of 4.5SH RNA 3.2-10.5 times in different cell lines; and viral infection, 5 times. Due to the significant difference in the turnover rates of these two RNAs, a similar activation of their transcription by heat shock increases the level of the short-lived 4.5SH RNA and has minor effect on the level of the long-lived 4.5SI RNA. In addition, the accumulation of 4.5SH RNA results not only from the induction of its transcription but also from a substantial retardation of its decay. To our knowledge, it is the first example of a short-lived non-coding RNA whose elongated lifetime contributes significantly to its accumulation in stressed cells.


Assuntos
Estabilidade de RNA , RNA Interferente Pequeno/metabolismo , Estresse Fisiológico , Animais , Infecções por Cardiovirus/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Vírus da Encefalomiocardite/fisiologia , Camundongos , RNA Interferente Pequeno/genética , Ratos , Transcrição Gênica
7.
Gene ; 555(2): 464-8, 2015 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-25445277

RESUMO

4.5SI and 4.5SH are two non-coding RNAs about 100nt long, synthesized by RNA polymerase III in cells of various rodents including mice, rats, and hamsters. The first RNA is long-lived whereas the half-life of the second is only 20min. We previously found that the 16bp double-stranded structure (stem), formed by 4.5SI RNA termini, contributes essentially to the long lifetime of this RNA (Koval et al., 2012). The rapid decay of 4.5SH RNA seems to be related to the lack of a similar structure in this RNA. The aim of this work was to verify whether the lifetime of any other short-lived non-coding RNA can be prolonged following creation of the double-stranded structure with its terminal regions. Here RNAs transcribed by RNA polymerase III from short interspersed elements (SINEs) B2 and Rhin-1 from the genomes of mouse and horseshoe bat, respectively, were used. Replacement of 16nt at the 3'-terminal region by the sequence complementary to the 5' end region of B2 and Rhin-1 RNA increased their half-life more than 4 fold. In addition, we demonstrated that shortening of the terminal stem from 16 to 8bp decreased only slightly the 4.5SI RNA lifetime. Finally, we showed that the disruption of an internal (non-terminal) stem in 4.5SI RNA did not accelerate its decay in cells. Possible mechanisms of the small non-coding RNA lifetime extension are discussed.


Assuntos
Estabilidade de RNA , RNA não Traduzido/genética , Animais , Quirópteros , Células HeLa , Humanos , Camundongos , Conformação de Ácido Nucleico , Plasmídeos/metabolismo , Elementos Nucleotídeos Curtos e Dispersos
8.
PLoS One ; 7(9): e44157, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22984470

RESUMO

Two RNAs (4.5SH and 4.5SI) with unknown functions share a number of features: short length (about 100 nt), transcription by RNA polymerase III, predominately nuclear localization, the presence in various tissues, and relatively narrow taxonomic distribution (4 and 3 rodent families, respectively). It was reported that 4.5SH RNA turns over rapidly, whereas 4.5SI RNA is stable in the cell, but their lifetimes remained unknown. We showed that 4.5SH is indeed short-lived (t(1/2)~18 min) and 4.5SI is long-lived (t(1/2)~22 h) in Krebs ascites carcinoma cells. The RNA structures specifying rapid or slow decay of different small cellular RNAs remain unstudied. We searched for RNA structural features that determine the short lifetime of 4.5SH in comparison with the long lifetime of 4.5SI RNA. The sequences of genes of 4.5SH and 4.5SI RNAs were altered and human cells (HeLa) were transfected with these genes. The decay rate of the original and altered RNAs was measured. The complementarity of 16-nt end regions of 4.5SI RNA proved to contribute to its stability in cells, whereas the lack of such complementarity in 4.5SH RNA caused its rapid decay. Possible mechanisms of the phenomenon are discussed.


Assuntos
Mamíferos/genética , Conformação de Ácido Nucleico , Estabilidade de RNA/genética , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/genética , Animais , Sequência de Bases , Meia-Vida , Células HeLa , Humanos , Dados de Sequência Molecular , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...