Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(48): e2310952120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37991946

RESUMO

To swim through a viscous fluid, a flagellated bacterium must overcome the fluid drag on its body by rotating a flagellum or a bundle of multiple flagella. Because the drag increases with the size of bacteria, it is expected theoretically that the swimming speed of a bacterium inversely correlates with its body length. Nevertheless, despite extensive research, the fundamental size-speed relation of flagellated bacteria remains unclear with different experiments reporting conflicting results. Here, by critically reviewing the existing evidence and synergizing our own experiments of large sample sizes, hydrodynamic modeling, and simulations, we demonstrate that the average swimming speed of Escherichia coli, a premier model of peritrichous bacteria, is independent of their body length. Our quantitative analysis shows that such a counterintuitive relation is the consequence of the collective flagellar dynamics dictated by the linear correlation between the body length and the number of flagella of bacteria. Notably, our study reveals how bacteria utilize the increasing number of flagella to regulate the flagellar motor load. The collective load sharing among multiple flagella results in a lower load on each flagellar motor and therefore faster flagellar rotation, which compensates for the higher fluid drag on the longer bodies of bacteria. Without this balancing mechanism, the swimming speed of monotrichous bacteria generically decreases with increasing body length, a feature limiting the size variation of the bacteria. Altogether, our study resolves a long-standing controversy over the size-speed relation of flagellated bacteria and provides insights into the functional benefit of multiflagellarity in bacteria.


Assuntos
Movimento , Natação , Movimento/fisiologia , Flagelos/fisiologia , Rotação , Escherichia coli/fisiologia
2.
Phys Rev Lett ; 128(20): 208101, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35657856

RESUMO

To rotate continuously without jamming, the flagellar filaments of bacteria need to be locked in phase. While several models have been proposed for eukaryotic flagella, the synchronization of bacterial flagella is less well understood. Starting from a reduced model of flexible and hydrodynamically coupled bacterial flagella, we rigorously coarse grain the equations of motion using the method of multiple scales, and hence show that bacterial flagella generically synchronize to zero phase difference via an elastohydrodynamic mechanism. Remarkably, the far-field rate of synchronization is maximized at an intermediate value of elastic compliance, with surprising implications for bacteria.


Assuntos
Flagelos , Modelos Biológicos , Bactérias , Cílios , Movimento (Física)
3.
Sci Rep ; 10(1): 8406, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32439952

RESUMO

Many species of bacteria swim through viscous environments by rotating multiple helical flagella. The filaments gather behind the cell body and form a close helical bundle, which propels the cell forward during a "run". The filaments inside the bundle cannot be continuously actuated, nor can they easily unbundle, if they are tangled around one another. The fact that bacteria can passively form coherent bundles, i.e. bundles which do not contain tangled pairs of filaments, may appear surprising given that flagella are actuated by uncoordinated motors. In this article, we establish the theoretical conditions under which a pair of rigid helical filaments can form a tangled bundle, and we compare these constraints with experimental data collected from the literature. Our results suggest that bacterial flagella are too straight and too far apart to form tangled bundles based on their intrinsic, undeformed geometry alone. This makes the formation of coherent bundles more robust against the passive nature of the bundling process, where the position of individual filaments cannot be controlled.


Assuntos
Bactérias/citologia , Flagelos/fisiologia , Fenômenos Biomecânicos , Citoesqueleto/química , Citoesqueleto/fisiologia , Flagelos/química , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...