Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Pain ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38718196

RESUMO

ABSTRACT: Ecological momentary assessment (EMA) allows for the collection of participant-reported outcomes (PROs), including pain, in the normal environment at high resolution and with reduced recall bias. Ecological momentary assessment is an important component in studies of pain, providing detailed information about the frequency, intensity, and degree of interference of individuals' pain. However, there is no universally agreed on standard for summarizing pain measures from repeated PRO assessment using EMA into a single, clinically meaningful measure of pain. Here, we quantify the accuracy of summaries (eg, mean and median) of pain outcomes obtained from EMA and the effect of thresholding these summaries to obtain binary clinical end points of chronic pain status (yes/no). Data applications and simulations indicate that binarizing empirical estimators (eg, sample mean, random intercept linear mixed model) can perform well. However, linear mixed-effect modeling estimators that account for the nonlinear relationship between average and variability of pain scores perform better for quantifying the true average pain and reduce estimation error by up to 50%, with larger improvements for individuals with more variable pain scores. We also show that binarizing pain scores (eg, <3 and ≥3) can lead to a substantial loss of statistical power (40%-50%). Thus, when examining pain outcomes using EMA, the use of linear mixed models using the entire scale (0-10) is superior to splitting the outcomes into 2 groups (<3 and ≥3) providing greater statistical power and sensitivity.

2.
Nat Commun ; 15(1): 3800, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714703

RESUMO

Clonal hematopoiesis (CH) is characterized by the acquisition of a somatic mutation in a hematopoietic stem cell that results in a clonal expansion. These driver mutations can be single nucleotide variants in cancer driver genes or larger structural rearrangements called mosaic chromosomal alterations (mCAs). The factors that influence the variations in mCA fitness and ultimately result in different clonal expansion rates are not well understood. We used the Passenger-Approximated Clonal Expansion Rate (PACER) method to estimate clonal expansion rate as PACER scores for 6,381 individuals in the NHLBI TOPMed cohort with gain, loss, and copy-neutral loss of heterozygosity mCAs. Our mCA fitness estimates, derived by aggregating per-individual PACER scores, were correlated (R2 = 0.49) with an alternative approach that estimated fitness of mCAs in the UK Biobank using population-level distributions of clonal fraction. Among individuals with JAK2 V617F clonal hematopoiesis of indeterminate potential or mCAs affecting the JAK2 gene on chromosome 9, PACER score was strongly correlated with erythrocyte count. In a cross-sectional analysis, genome-wide association study of estimates of mCA expansion rate identified a TCL1A locus variant associated with mCA clonal expansion rate, with suggestive variants in NRIP1 and TERT.


Assuntos
Aberrações Cromossômicas , Hematopoiese Clonal , Mosaicismo , Humanos , Hematopoiese Clonal/genética , Masculino , Feminino , Estudo de Associação Genômica Ampla , Janus Quinase 2/genética , Telomerase/genética , Telomerase/metabolismo , Perda de Heterozigosidade , Estudos Transversais , Mutação , Pessoa de Meia-Idade , Células-Tronco Hematopoéticas/metabolismo , Polimorfismo de Nucleotídeo Único , Idoso
3.
Nat Genet ; 55(11): 1912-1919, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37904051

RESUMO

Megabase-scale mosaic chromosomal alterations (mCAs) in blood are prognostic markers for a host of human diseases. Here, to gain a better understanding of mCA rates in genetically diverse populations, we analyzed whole-genome sequencing data from 67,390 individuals from the National Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine program. We observed higher sensitivity with whole-genome sequencing data, compared with array-based data, in uncovering mCAs at low mutant cell fractions and found that individuals of European ancestry have the highest rates of autosomal mCAs and the lowest rates of chromosome X mCAs, compared with individuals of African or Hispanic ancestry. Although further studies in diverse populations will be needed to replicate our findings, we report three loci associated with loss of chromosome X, associations between autosomal mCAs and rare variants in DCPS, ADM17, PPP1R16B and TET2 and ancestry-specific variants in ATM and MPL with mCAs in cis.


Assuntos
Genoma Humano , Estudo de Associação Genômica Ampla , Mosaicismo , Humanos , População Negra/genética , Hispânico ou Latino/genética , Medicina de Precisão
4.
medRxiv ; 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37905118

RESUMO

Clonal hematopoiesis (CH) is characterized by the acquisition of a somatic mutation in a hematopoietic stem cell that results in a clonal expansion. These driver mutations can be single nucleotide variants in cancer driver genes or larger structural rearrangements called mosaic chromosomal alterations (mCAs). The factors that influence the variations in mCA fitness and ultimately result in different clonal expansion rates are not well-understood. We used the Passenger-Approximated Clonal Expansion Rate (PACER) method to estimate clonal expansion rate for 6,381 individuals in the NHLBI TOPMed cohort with gain, loss, and copy-neutral loss of heterozygosity mCAs. Our estimates of mCA fitness were correlated (R 2 = 0.49) with an alternative approach that estimated fitness of mCAs in the UK Biobank using a theoretical probability distribution. Individuals with lymphoid-associated mCAs had a significantly higher white blood cell count and faster clonal expansion rate. In a cross-sectional analysis, genome-wide association study of estimates of mCA expansion rate identified TCL1A , NRIP1 , and TERT locus variants as modulators of mCA clonal expansion rate.

5.
Sci Rep ; 13(1): 14747, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679407

RESUMO

Telomere length (TL) attrition, epigenetic age acceleration, and mitochondrial DNA copy number (mtDNAcn) decline are established hallmarks of aging. Each has been individually associated with Alzheimer's dementia, cognitive function, and pathologic Alzheimer's disease (AD). Epigenetic age and mtDNAcn have been studied in brain tissue directly but prior work on TL in brain is limited to small sample sizes and most studies have examined leukocyte TL. Importantly, TL, epigenetic age clocks, and mtDNAcn have not been studied jointly in brain tissue from an AD cohort. We examined dorsolateral prefrontal cortex (DLPFC) tissue from N = 367 participants of the Religious Orders Study (ROS) or the Rush Memory and Aging Project (MAP). TL and mtDNAcn were estimated from whole genome sequencing (WGS) data and cortical clock age was computed on 347 CpG sites. We examined dementia, MCI, and level of and change in cognition, pathologic AD, and three quantitative AD traits, as well as measures of other neurodegenerative diseases and cerebrovascular diseases (CVD). We previously showed that mtDNAcn from DLPFC brain tissue was associated with clinical and pathologic features of AD. Here, we show that those associations are independent of TL. We found TL to be associated with ß-amyloid levels (beta = - 0.15, p = 0.023), hippocampal sclerosis (OR = 0.56, p = 0.0015) and cerebral atherosclerosis (OR = 1.44, p = 0.0007). We found strong associations between mtDNAcn and clinical measures of AD. The strongest associations with pathologic measures of AD were with cortical clock and there were associations of mtDNAcn with global AD pathology and tau tangles. Of the other pathologic traits, mtDNAcn was associated with hippocampal sclerosis, macroscopic infarctions and CAA and cortical clock was associated with Lewy bodies. Multi-modal age acceleration, accelerated aging on both mtDNAcn and cortical clock, had greater effect size than a single measure alone. These findings highlight for the first time that age acceleration determined on multiple genomic measures, mtDNAcn and cortical clock may have a larger effect on AD/AD related disorders (ADRD) pathogenesis than single measures.


Assuntos
Doença de Alzheimer , Esclerose Hipocampal , Humanos , Doença de Alzheimer/genética , Genômica , Encéfalo , DNA Mitocondrial , Envelhecimento/genética
6.
Circ Res ; 133(5): 376-386, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37489536

RESUMO

BACKGROUND: Premature menopause is a risk factor for accelerated cardiovascular aging, but underlying mechanisms remain incompletely understood. This study investigated the role of leukocyte telomere length (LTL), a marker of cellular aging and genomic instability, in the association of premature menopause with cardiovascular disease. METHODS: Participants from the UK Biobank and Women's Health Initiative with complete reproductive history and LTL measurements were included. Primary analyses tested the association between age at menopause and LTL using multivariable-adjusted linear regression. Secondary analyses stratified women by history of gynecologic surgery. Mendelian randomization was used to infer causal relationships between LTL and age at natural menopause. Multivariable-adjusted Cox regression and mediation analyses tested the joint associations of premature menopause and LTL with incident coronary artery disease. RESULTS: This study included 130 254 postmenopausal women (UK Biobank: n=122 224; Women's Health Initiative: n=8030), of whom 4809 (3.7%) had experienced menopause before age 40. Earlier menopause was associated with shorter LTL (meta-analyzed ß=-0.02 SD/5 years of earlier menopause [95% CI, -0.02 to -0.01]; P=7.2×10-12). This association was stronger and significant in both cohorts for women with natural/spontaneous menopause (meta-analyzed ß=-0.04 SD/5 years of earlier menopause [95% CI, -0.04 to -0.03]; P<2.2×10-16) and was independent of hormone therapy use. Mendelian randomization supported a causal association of shorter genetically predicted LTL with earlier age at natural menopause. LTL and age at menopause were independently associated with incident coronary artery disease, and mediation analyses indicated small but significant mediation effects of LTL in the association of menopausal age with coronary artery disease. CONCLUSIONS: Earlier age at menopause is associated with shorter LTL, especially among women with natural menopause. Accelerated telomere shortening may contribute to the heightened cardiovascular risk associated with premature menopause.


Assuntos
Doença da Artéria Coronariana , Menopausa Precoce , Adulto , Feminino , Humanos , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/genética , Leucócitos , Menopausa/genética , Pós-Menopausa/genética , Telômero/genética
7.
Mol Genet Genomic Med ; 11(10): e2237, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37496383

RESUMO

INTRODUCTION: The frequency and implications of secondary findings (SFs) from genomic testing data have been extensively researched. However, little is known about the frequency or reporting of SFs in Africans, who are underrepresented in large-scale population genomic studies. The availability of data from the first whole-genome sequencing for orofacial clefts in an African population motivated this investigation. METHODS: In total, 130 case-parent trios were analyzed for SFs within the ACMG SFv.3.0 list genes. Additionally, we filtered for four more genes (HBB, HSD32B, G6PD and ACADM). RESULTS: We identified 246 unique variants in 55 genes; five variants in four genes were classified as pathogenic or likely pathogenic (P/LP). The P/LP variants were seen in 2.3% (9/390) of the subjects, a frequency higher than ~1% reported for diverse ethnicities. On the ACMG list, pathogenic variants were observed in PRKAG (p. Glu183Lys). Variants in the PALB2 (p. Glu159Ter), RYR1 (p. Arg2163Leu) and LDLR (p. Asn564Ser) genes were predicted to be LP. CONCLUSION: This study provides information on the frequency and pathogenicity of SFs in an African cohort. Early risk detection will help reduce disease burden and contribute to efforts to increase knowledge of the distribution and impact of actionable genomic variants in diverse populations.


Assuntos
Fenda Labial , Fissura Palatina , Humanos , Predisposição Genética para Doença , Fenda Labial/genética , Fissura Palatina/genética , Genômica , África Subsaariana/epidemiologia
8.
Thorax ; 78(6): 566-573, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36690926

RESUMO

BACKGROUND: The MUC5B promoter variant (rs35705950) and telomere length are linked to pulmonary fibrosis and CT-based qualitative assessments of interstitial abnormalities, but their associations with longitudinal quantitative changes of the lung interstitium among community-dwelling adults are unknown. METHODS: We used data from participants in the Multi-Ethnic Study of Atherosclerosis with high-attenuation areas (HAAs, Examinations 1-6 (2000-2018)) and MUC5B genotype (n=4552) and telomere length (n=4488) assessments. HAA was defined as the per cent of imaged lung with attenuation of -600 to -250 Hounsfield units. We used linear mixed-effects models to examine associations of MUC5B risk allele (T) and telomere length with longitudinal changes in HAAs. Joint models were used to examine associations of longitudinal changes in HAAs with death and interstitial lung disease (ILD). RESULTS: The MUC5B risk allele (T) was associated with an absolute change in HAAs of 2.60% (95% CI 0.36% to 4.86%) per 10 years overall. This association was stronger among those with a telomere length below an age-adjusted percentile of 5% (p value for interaction=0.008). A 1% increase in HAAs per year was associated with 7% increase in mortality risk (rate ratio (RR)=1.07, 95% CI 1.02 to 1.12) for overall death and 34% increase in ILD (RR=1.34, 95% CI 1.20 to 1.50). Longer baseline telomere length was cross-sectionally associated with less HAAs from baseline scans, but not with longitudinal changes in HAAs. CONCLUSIONS: Longitudinal increases in HAAs were associated with the MUC5B risk allele and a higher risk of death and ILD.


Assuntos
Doenças Pulmonares Intersticiais , Pulmão , Adulto , Humanos , Pulmão/diagnóstico por imagem , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/complicações , Genótipo , Telômero/genética , Mucina-5B/genética
9.
Cleft Palate Craniofac J ; : 10556656221135926, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36384317

RESUMO

Novel or rare damaging mutations have been implicated in the developmental pathogenesis of nonsyndromic cleft lip with or without cleft palate (nsCL ± P). Thus, we investigated the human genome for high-impact mutations that could explain the risk of nsCL ± P in our cohorts.We conducted next-generation sequencing (NGS) analysis of 130 nsCL ± P case-parent African trios to identify pathogenic variants that contribute to the risk of clefting. We replicated this analysis using whole-exome sequence data from a Brazilian nsCL ± P cohort. Computational analyses were then used to predict the mechanism by which these variants could result in increased risks for nsCL ± P.We discovered damaging mutations within the AFDN gene, a cell adhesion molecule (CAMs) that was previously shown to contribute to cleft palate in mice. These mutations include p.Met1164Ile, p.Thr453Asn, p.Pro1638Ala, p.Arg669Gln, p.Ala1717Val, and p.Arg1596His. We also discovered a novel splicing p.Leu1588Leu mutation in this protein. Computational analysis suggests that these amino acid changes affect the interactions with other cleft-associated genes including nectins (PVRL1, PVRL2, PVRL3, and PVRL4) CDH1, CTNNA1, and CTNND1.This is the first report on the contribution of AFDN to the risk for nsCL ± P in humans. AFDN encodes AFADIN, an important CAM that forms calcium-independent complexes with nectins 1 and 4 (encoded by the genes PVRL1 and PVRL4). This discovery shows the power of NGS analysis of multiethnic cleft samples in combination with a computational approach in the understanding of the pathogenesis of nsCL ± P.

10.
Genome Med ; 14(1): 112, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175932

RESUMO

BACKGROUND: Asthma is the most common chronic disease in children, occurring at higher frequencies and with more severe disease in children with African ancestry. METHODS: We tested for association with haplotypes at the most replicated and significant childhood-onset asthma locus at 17q12-q21 and asthma in European American and African American children. Following this, we used whole-genome sequencing data from 1060 African American and 100 European American individuals to identify novel variants on a high-risk African American-specific haplotype. We characterized these variants in silico using gene expression and ATAC-seq data from airway epithelial cells, functional annotations from ENCODE, and promoter capture (pc)Hi-C maps in airway epithelial cells. Candidate causal variants were then assessed for correlation with asthma-associated phenotypes in African American children and adults. RESULTS: Our studies revealed nine novel African-specific common variants, enriched on a high-risk asthma haplotype, which regulated the expression of GSDMA in airway epithelial cells and were associated with features of severe asthma. Using ENCODE annotations, ATAC-seq, and pcHi-C, we narrowed the associations to two candidate causal variants that are associated with features of T2 low severe asthma. CONCLUSIONS: Previously unknown genetic variation at the 17q12-21 childhood-onset asthma locus contributes to asthma severity in individuals with African ancestries. We suggest that many other population-specific variants that have not been discovered in GWAS contribute to the genetic risk for asthma and other common diseases.


Assuntos
Asma , Negro ou Afro-Americano , Negro ou Afro-Americano/genética , Alelos , Asma/genética , Asma/metabolismo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Proteínas de Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Proteínas Citotóxicas Formadoras de Poros
11.
Sci Rep ; 12(1): 11743, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35817949

RESUMO

The majority (85%) of nonsyndromic cleft lip with or without cleft palate (nsCL/P) cases occur sporadically, suggesting a role for de novo mutations (DNMs) in the etiology of nsCL/P. To identify high impact protein-altering DNMs that contribute to the risk of nsCL/P, we conducted whole-genome sequencing (WGS) analyses in 130 African case-parent trios (affected probands and unaffected parents). We identified 162 high confidence protein-altering DNMs some of which are based on available evidence, contribute to the risk of nsCL/P. These include novel protein-truncating DNMs in the ACTL6A, ARHGAP10, MINK1, TMEM5 and TTN genes; as well as missense variants in ACAN, DHRS3, DLX6, EPHB2, FKBP10, KMT2D, RECQL4, SEMA3C, SEMA4D, SHH, TP63, and TULP4. Many of these protein-altering DNMs were predicted to be pathogenic. Analysis using mouse transcriptomics data showed that some of these genes are expressed during the development of primary and secondary palate. Gene-set enrichment analysis of the protein-altering DNMs identified palatal development and neural crest migration among the few processes that were significantly enriched. These processes are directly involved in the etiopathogenesis of clefting. The analysis of the coding sequence in the WGS data provides more evidence of the opportunity for novel findings in the African genome.


Assuntos
Fenda Labial , Fissura Palatina , Animais , Encéfalo/anormalidades , Fenda Labial/genética , Fissura Palatina/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Camundongos , Mutação , Polimorfismo de Nucleotídeo Único
12.
Cell Genom ; 2(1)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35530816

RESUMO

Genetic studies on telomere length are important for understanding age-related diseases. Prior GWAS for leukocyte TL have been limited to European and Asian populations. Here, we report the first sequencing-based association study for TL across ancestrally-diverse individuals (European, African, Asian and Hispanic/Latino) from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. We used whole genome sequencing (WGS) of whole blood for variant genotype calling and the bioinformatic estimation of telomere length in n=109,122 individuals. We identified 59 sentinel variants (p-value <5×10-9) in 36 loci associated with telomere length, including 20 newly associated loci (13 were replicated in external datasets). There was little evidence of effect size heterogeneity across populations. Fine-mapping at OBFC1 indicated the independent signals colocalized with cell-type specific eQTLs for OBFC1 (STN1). Using a multi-variant gene-based approach, we identified two genes newly implicated in telomere length, DCLRE1B (SNM1B) and PARN. In PheWAS, we demonstrated our TL polygenic trait scores (PTS) were associated with increased risk of cancer-related phenotypes.

13.
Front Med (Lausanne) ; 9: 849214, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547202

RESUMO

Chronic pain has become a global health problem contributing to years lived with disability and reduced quality of life. Advances in the clinical management of chronic pain have been limited due to incomplete understanding of the multiple risk factors and molecular mechanisms that contribute to the development of chronic pain. The Acute to Chronic Pain Signatures (A2CPS) Program aims to characterize the predictive nature of biomarkers (brain imaging, high-throughput molecular screening techniques, or "omics," quantitative sensory testing, patient-reported outcome assessments and functional assessments) to identify individuals who will develop chronic pain following surgical intervention. The A2CPS is a multisite observational study investigating biomarkers and collective biosignatures (a combination of several individual biomarkers) that predict susceptibility or resilience to the development of chronic pain following knee arthroplasty and thoracic surgery. This manuscript provides an overview of data collection methods and procedures designed to standardize data collection across multiple clinical sites and institutions. Pain-related biomarkers are evaluated before surgery and up to 3 months after surgery for use as predictors of patient reported outcomes 6 months after surgery. The dataset from this prospective observational study will be available for researchers internal and external to the A2CPS Consortium to advance understanding of the transition from acute to chronic postsurgical pain.

14.
Genet Epidemiol ; 46(5-6): 266-284, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35451532

RESUMO

Genetic association studies of child health outcomes often employ family-based study designs. One of the most popular family-based designs is the case-parent trio design that considers the smallest possible nuclear family consisting of two parents and their affected child. This trio design is particularly advantageous for studying relatively rare disorders because it is less prone to type 1 error inflation due to population stratification compared to population-based study designs (e.g., case-control studies). However, obtaining genetic data from both parents is difficult, from a practical perspective, and many large studies predominantly measure genetic variants in mother-child dyads. While some statistical methods for analyzing parent-child dyad data (most commonly involving mother-child pairs) exist, it is not clear if they provide the same advantage as trio methods in protecting against population stratification, or if a specific dyad design (e.g., case-mother dyads vs. case-mother/control-mother dyads) is more advantageous. In this article, we review existing statistical methods for analyzing genome-wide marker data on dyads and perform extensive simulation experiments to benchmark their type I errors and statistical power under different scenarios. We extend our evaluation to existing methods for analyzing a combination of case-parent trios and dyads together. We apply these methods on genotyped and imputed data from multiethnic mother-child pairs only, case-parent trios only or combinations of both dyads and trios from the Gene, Environment Association Studies consortium (GENEVA), where each family was ascertained through a child affected by nonsyndromic cleft lip with or without cleft palate. Results from the GENEVA study corroborate the findings from our simulation experiments. Finally, we provide recommendations for using statistical genetic association methods for dyads.


Assuntos
Fenda Labial , Fissura Palatina , Benchmarking , Fenda Labial/genética , Fissura Palatina/genética , Feminino , Estudos de Associação Genética , Humanos , Modelos Genéticos , Mães , Relações Pais-Filho , Polimorfismo de Nucleotídeo Único
15.
Sci Adv ; 8(14): eabl6579, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35385311

RESUMO

Human genetic studies support an inverse causal relationship between leukocyte telomere length (LTL) and coronary artery disease (CAD), but directionally mixed effects for LTL and diverse malignancies. Clonal hematopoiesis of indeterminate potential (CHIP), characterized by expansion of hematopoietic cells bearing leukemogenic mutations, predisposes both hematologic malignancy and CAD. TERT (which encodes telomerase reverse transcriptase) is the most significantly associated germline locus for CHIP in genome-wide association studies. Here, we investigated the relationship between CHIP, LTL, and CAD in the Trans-Omics for Precision Medicine (TOPMed) program (n = 63,302) and UK Biobank (n = 47,080). Bidirectional Mendelian randomization studies were consistent with longer genetically imputed LTL increasing propensity to develop CHIP, but CHIP then, in turn, hastens to shorten measured LTL (mLTL). We also demonstrated evidence of modest mediation between CHIP and CAD by mLTL. Our data promote an understanding of potential causal relationships across CHIP and LTL toward prevention of CAD.

16.
Genet Epidemiol ; 46(3-4): 170-181, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35312098

RESUMO

Genome-wide association studies (GWAS) have successfully identified thousands of single nucleotide polymorphisms (SNPs) associated with complex traits; however, the identified SNPs account for a fraction of trait heritability, and identifying the functional elements through which genetic variants exert their effects remains a challenge. Recent evidence suggests that SNPs associated with complex traits are more likely to be expression quantitative trait loci (eQTL). Thus, incorporating eQTL information can potentially improve power to detect causal variants missed by traditional GWAS approaches. Using genomic, transcriptomic, and platelet phenotype data from the Genetic Study of Atherosclerosis Risk family-based study, we investigated the potential to detect novel genomic risk loci by incorporating information from eQTL in the relevant target tissues (i.e., platelets and megakaryocytes) using established statistical principles in a novel way. Permutation analyses were performed to obtain family-wise error rates for eQTL associations, substantially lowering the genome-wide significance threshold for SNP-phenotype associations. In addition to confirming the well known association between PEAR1 and platelet aggregation, our eQTL-focused approach identified a novel locus (rs1354034) and gene (ARHGEF3) not previously identified in a GWAS of platelet aggregation phenotypes. A colocalization analysis showed strong evidence for a functional role of this eQTL.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Receptores de Superfície Celular , Transcriptoma
17.
J Allergy Clin Immunol ; 149(5): 1807-1811.e16, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34780848

RESUMO

BACKGROUND: Integration of metabolomics with genetics may advance understanding of disease pathogenesis but has been underused in asthma genetic studies. OBJECTIVE: We sought to discover new genetic effects in asthma and to characterize the molecular consequences of asthma genetic risk through integration with the metabolome in a homogeneous population. METHODS: From fasting serum samples collected on 348 Tangier Island residents, we quantified 2612 compounds using untargeted metabolomics. Genotyping was performed using Illumina's MEGA array imputed to the TOPMed reference panel. To prioritize metabolites for genome-wide association analysis, we performed a metabolome-wide association study with asthma, selecting asthma-associated metabolites with heritability q value less than 0.01 for genome-wide association analysis. We also tested the association between all metabolites and 8451 candidate asthma single nucleotide polymorphisms previously associated with asthma in the UK Biobank. We followed up significant associations by characterizing shared genetic signal for metabolites and asthma using colocalization analysis. For detailed Methods, please see this article's Online Repository at www.jacionline.org. RESULTS: A total of 60 metabolites were associated with asthma (P < .01), including 40 heritable metabolites tested in genome-wide association analysis. We observed a strong association peak for the endocannabinoid linoleoyl ethanolamide on chromosome 6 in VNN1 (P < 2.7 × 10-9). We found strong evidence (colocalization posterior probability >75%) for a shared causal variant between 3 metabolites and asthma, including the polyamine acisoga and variants in LPP, and derivative leukotriene B4 and intergenic variants in chr10p14. CONCLUSIONS: We identified novel metabolite quantitative trait loci with asthma associations. Identification and characterization of these genetically driven metabolites may provide insight into the functional consequences of genetic risk factors for asthma.


Assuntos
Asma , Locos de Características Quantitativas , Asma/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único
18.
PLoS Genet ; 17(7): e1009584, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34242216

RESUMO

Based on epidemiologic and embryologic patterns, nonsyndromic orofacial clefts- the most common craniofacial birth defects in humans- are commonly categorized into cleft lip with or without cleft palate (CL/P) and cleft palate alone (CP), which are traditionally considered to be etiologically distinct. However, some evidence of shared genetic risk in IRF6, GRHL3 and ARHGAP29 regions exists; only FOXE1 has been recognized as significantly associated with both CL/P and CP in genome-wide association studies (GWAS). We used a new statistical approach, PLACO (pleiotropic analysis under composite null), on a combined multi-ethnic GWAS of 2,771 CL/P and 611 CP case-parent trios. At the genome-wide significance threshold of 5 × 10-8, PLACO identified 1 locus in 1q32.2 (IRF6) that appears to increase risk for one OFC subgroup but decrease risk for the other. At a suggestive significance threshold of 10-6, we found 5 more loci with compelling candidate genes having opposite effects on CL/P and CP: 1p36.13 (PAX7), 3q29 (DLG1), 4p13 (LIMCH1), 4q21.1 (SHROOM3) and 17q22 (NOG). Additionally, we replicated the recognized shared locus 9q22.33 (FOXE1), and identified 2 loci in 19p13.12 (RAB8A) and 20q12 (MAFB) that appear to influence risk of both CL/P and CP in the same direction. We found locus-specific effects may vary by racial/ethnic group at these regions of genetic overlap, and failed to find evidence of sex-specific differences. We confirmed shared etiology of the two OFC subtypes comprising CL/P, and additionally found suggestive evidence of differences in their pathogenesis at 2 loci of genetic overlap. Our novel findings include 6 new loci of genetic overlap between CL/P and CP; 3 new loci between pairwise OFC subtypes; and 4 loci not previously implicated in OFCs. Our in-silico validation showed PLACO is robust to subtype-specific effects, and can achieve massive power gains over existing approaches for identifying genetic overlap between disease subtypes. In summary, we found suggestive evidence for new genetic regions and confirmed some recognized OFC genes either exerting shared risk or with opposite effects on risk to OFC subtypes.


Assuntos
Fenda Labial/genética , Fissura Palatina/genética , Pleiotropia Genética , Biologia Computacional , Simulação por Computador , Etnicidade , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Reprodutibilidade dos Testes
19.
Nat Commun ; 12(1): 3626, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131117

RESUMO

Platelet aggregation at the site of atherosclerotic vascular injury is the underlying pathophysiology of myocardial infarction and stroke. To build upon prior GWAS, here we report on 16 loci identified through a whole genome sequencing (WGS) approach in 3,855 NHLBI Trans-Omics for Precision Medicine (TOPMed) participants deeply phenotyped for platelet aggregation. We identify the RGS18 locus, which encodes a myeloerythroid lineage-specific regulator of G-protein signaling that co-localizes with expression quantitative trait loci (eQTL) signatures for RGS18 expression in platelets. Gene-based approaches implicate the SVEP1 gene, a known contributor of coronary artery disease risk. Sentinel variants at RGS18 and PEAR1 are associated with thrombosis risk and increased gastrointestinal bleeding risk, respectively. Our WGS findings add to previously identified GWAS loci, provide insights regarding the mechanism(s) by which genetics may influence cardiovascular disease risk, and underscore the importance of rare variant and regulatory approaches to identifying loci contributing to complex phenotypes.


Assuntos
Plaquetas/metabolismo , Mapeamento Cromossômico , Sequenciamento Completo do Genoma , Sequência de Bases , Proteínas de Ligação ao GTP , Estudo de Associação Genômica Ampla , Células HEK293 , Humanos , Células K562 , Fenótipo , Agregação Plaquetária , Testes de Função Plaquetária , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Proteínas RGS/genética , Proteínas RGS/metabolismo , Receptores de Superfície Celular/genética , Trombose/genética
20.
Front Cell Dev Biol ; 9: 621018, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937227

RESUMO

Two large studies of case-parent trios ascertained through a proband with a non-syndromic orofacial cleft (OFC, which includes cleft lip and palate, cleft lip alone, or cleft palate alone) were used to test for possible gene-environment (G × E) interaction between genome-wide markers (both observed and imputed) and self-reported maternal exposure to smoking, alcohol consumption, and multivitamin supplementation during pregnancy. The parent studies were as follows: GENEVA, which included 1,939 case-parent trios recruited largely through treatment centers in Europe, the United States, and Asia, and 1,443 case-parent trios from the Pittsburgh Orofacial Cleft Study (POFC) also ascertained through a proband with an OFC including three major racial/ethnic groups (European, Asian, and Latin American). Exposure rates to these environmental risk factors (maternal smoking, alcohol consumption, and multivitamin supplementation) varied across studies and among racial/ethnic groups, creating substantial differences in power to detect G × E interaction, but the trio design should minimize spurious results due to population stratification. The GENEVA and POFC studies were analyzed separately, and a meta-analysis was conducted across both studies to test for G × E interaction using the 2 df test of gene and G × E interaction and the 1 df test for G × E interaction alone. The 2 df test confirmed effects for several recognized risk genes, suggesting modest G × E effects. This analysis did reveal suggestive evidence for G × Vitamin interaction for CASP9 on 1p36 located about 3 Mb from PAX7, a recognized risk gene. Several regions gave suggestive evidence of G × E interaction in the 1 df test. For example, for G × Smoking interaction, the 1 df test suggested markers in MUSK on 9q31.3 from meta-analysis. Markers near SLCO3A1 also showed suggestive evidence in the 1 df test for G × Alcohol interaction, and rs41117 near RETREG1 (a.k.a. FAM134B) also gave suggestive significance in the meta-analysis of the 1 df test for G × Vitamin interaction. While it remains quite difficult to obtain definitive evidence for G × E interaction in genome-wide studies, perhaps due to small effect sizes of individual genes combined with low exposure rates, this analysis of two large case-parent trio studies argues for considering possible G × E interaction in any comprehensive study of complex and heterogeneous disorders such as OFC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...