Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 11(38): 23400-23408, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35479807

RESUMO

The difference in resistive switching characteristics by modifying the device configuration provides a unique operating principle, which is essential for both fundamental studies and the development of future memory devices. Here, we demonstrate the poly(methyl methacrylate) (PMMA)-based resistive switching characteristics using four different combinations of electrode/electrolyte arrangement in the device geometry. From the current-voltage (I-V) measurements, all the PMMA-based devices revealed nonvolatile memory behavior with a higher ON/OFF resistance ratio (∼105-107). Significantly, the current conduction in the filament and resistive switching behavior depend majorly on the presence of Al electrode and electrochemically active silver (Ag) element in the PMMA matrix. A trap-controlled space charge limited conduction (SCLC) mechanism constitutes the resistive switching in the Al/PMMA/Al device, whereas the current conduction governed by ohmic behavior influences the resistive switching in the Ag-including devices. The depth-profiling X-ray photoelectron spectroscopy (XPS) study evidences the conducting filament formation processes in the PMMA-based devices. These results with different conduction mechanisms provide further insights into the understanding of the resistive switching behavior in the polymer-based devices by simply rearranging the device configuration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA