Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Haematol ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38736325

RESUMO

B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) blasts strictly depend on the transport of extra-cellular asparagine (Asn), yielding a rationale for L-asparaginase (ASNase) therapy. However, the carriers used by ALL blasts for Asn transport have not been identified yet. Exploiting RS4;11 cells as BCP-ALL model, we have found that cell Asn is lowered by either silencing or inhibition of the transporters ASCT2 or SNAT5. The inhibitors V-9302 (for ASCT2) and GluγHA (for SNAT5) markedly lower cell proliferation and, when used together, suppress mTOR activity, induce autophagy and cause a severe nutritional stress, leading to a proliferative arrest and a massive cell death in both the ASNase-sensitive RS4;11 cells and the relatively ASNase-insensitive NALM-6 cells. The cytotoxic effect is not prevented by coculturing leukaemic cells with primary mesenchymal stromal cells. Leukaemic blasts of paediatric ALL patients express ASCT2 and SNAT5 at diagnosis and undergo marked cytotoxicity when exposed to the inhibitors. ASCT2 expression is positively correlated with the minimal residual disease at the end of the induction therapy. In conclusion, ASCT2 and SNAT5 are the carriers exploited by ALL cells to transport Asn, and ASCT2 expression is associated with a lower therapeutic response. ASCT2 may thus represent a novel therapeutic target in BCP-ALL.

2.
Food Funct ; 15(9): 5118-5131, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38682277

RESUMO

This study investigated the impact of in vivo available colon-mango (poly)phenols on stress-induced impairment of intestinal barrier function. Caco-2/HT29-MTX cells were incubated with six extracts of ileal fluid collected pre- and 4-8 h post-mango consumption before being subjected to inflammatory stress. (Poly)phenols in ileal fluids were analysed by UHPLC-HR-MS. Epithelial barrier function was monitored by measurement of trans-epithelial electrical resistance (TEER) and the production of selected inflammatory markers (interleukin-8 (IL-8) and nitric oxide (NO)) and the major mucin of the mucosal layer (MUC2). Post-mango intake ileal fluids contained principally benzoic acids, hydroxybenzenes and galloyl derivatives. There was a high interindividual variability in the levels of these compounds, which was reflected by the degree of variability in the protective effects of individual ileal extracts on inflammatory changes in the treated cell cultures. The 24 h treatment with non-cytotoxic doses of extracts of 4-8 h post-mango intake ileal fluid significantly reduced the TEER decrease in monolayers treated with the inflammatory cytomix. This effect was not associated with changes in IL-8 expression and secretion or claudine-7 expression. The mango derived-ileal fluid extract (IFE) also mitigated cytomix-dependent nitrite secretion, as a proxy of NO production, and the MUC2 reduction observed upon the inflammatory challenge. These insights shed light on the potential protective effect of mango (poly)phenols on the intestinal barrier exposed to inflammatory conditions.


Assuntos
Interleucina-8 , Mucosa Intestinal , Mangifera , Mucina-2 , Humanos , Mangifera/química , Células CACO-2 , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Interleucina-8/metabolismo , Mucina-2/metabolismo , Células HT29 , Polifenóis/farmacologia , Colo/efeitos dos fármacos , Colo/metabolismo , Óxido Nítrico/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Inflamação/tratamento farmacológico , Função da Barreira Intestinal
3.
Front Microbiol ; 15: 1349391, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426063

RESUMO

Members of the genus Bifidobacterium are among the first microorganisms colonizing the human gut. Among these species, strains of Bifidobacterium breve are known to be commonly transmitted from mother to her newborn, while this species has also been linked with activities supporting human wellbeing. In the current study, an in silico approach, guided by ecology- and phylogenome-based analyses, was employed to identify a representative strain of B. breve to be exploited as a novel health-promoting candidate. The selected strain, i.e., B. breve PRL2012, was found to well represent the genetic content and functional genomic features of the B. breve taxon. We evaluated the ability of PRL2012 to survive in the gastrointestinal tract and to interact with other human gut commensal microbes. When co-cultivated with various human gut commensals, B. breve PRL2012 revealed an enhancement of its metabolic activity coupled with the activation of cellular defense mechanisms to apparently improve its survivability in a simulated ecosystem resembling the human microbiome.

4.
Appl Environ Microbiol ; 90(2): e0201423, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38294252

RESUMO

Bifidobacteria are among the first microbial colonizers of the human gut, being frequently associated with human health-promoting activities. In the current study, an in silico methodology based on an ecological and phylogenomic-driven approach allowed the selection of a Bifidobacterium adolescentis prototype strain, i.e., B. adolescentis PRL2023, which best represents the overall genetic content and functional features of the B. adolescentis taxon. Such features were confirmed by in vitro experiments aimed at evaluating the ability of this strain to survive in the gastrointestinal tract of the host and its ability to interact with human intestinal cells and other microbial gut commensals. In this context, co-cultivation of B. adolescentis PRL2023 and several gut commensals revealed various microbe-microbe interactions and indicated co-metabolism of particular plant-derived glycans, such as xylan.IMPORTANCEThe use of appropriate bacterial strains in experimental research becomes imperative in order to investigate bacterial behavior while mimicking the natural environment. In the current study, through in silico and in vitro methodologies, we were able to identify the most representative strain of the Bifidobacterium adolescentis species. The ability of this strain, B. adolescentis PRL2023, to cope with the environmental challenges imposed by the gastrointestinal tract, together with its ability to switch its carbohydrate metabolism to compete with other gut microorganisms, makes it an ideal choice as a B. adolescentis prototype and a member of the healthy microbiota of adults. This strain possesses a genetic blueprint appropriate for its exploitation as a candidate for next-generation probiotics.


Assuntos
Bifidobacterium adolescentis , Microbioma Gastrointestinal , Probióticos , Adulto , Humanos , Bifidobacterium adolescentis/genética , Bifidobacterium adolescentis/metabolismo , Microbioma Gastrointestinal/genética , Bifidobacterium/genética , Bifidobacterium/metabolismo , Filogenia
5.
J Nanobiotechnology ; 22(1): 45, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291460

RESUMO

Amorphous silica nanoparticles (ASNP) are among the nanomaterials that are produced in large quantities. ASNP have been present for a long time in several fast-moving consumer products, several of which imply exposure of the gastrointestinal tract, such as toothpastes, food additives, drug excipients, and carriers. Consolidated use and experimental evidence have consistently pointed to the very low acute toxicity and limited absorption of ASNP. However, slow absorption implies prolonged exposure of the intestinal epithelium to ASNP, with documented effects on intestinal permeability and immune gut homeostasis. These effects could explain the hepatic toxicity observed after oral administration of ASNP in animals. More recently, the role of microbiota in these and other ASNP effects has attracted increasing interest in parallel with the recognition of the role of microbiota in a variety of conditions. Although evidence for nanomaterial effects on microbiota is particularly abundant for materials endowed with bactericidal activities, a growing body of recent experimental data indicates that ASNPs also modify microbiota. The implications of these effects are recounted in this contribution, along with a discussion of the more important open issues and recommendations for future research.


Assuntos
Microbioma Gastrointestinal , Nanopartículas , Animais , Humanos , Dióxido de Silício/toxicidade , Nanopartículas/toxicidade , Mucosa Intestinal
6.
Microb Biotechnol ; 17(2): e14406, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38271233

RESUMO

Bifidobacteria are commensal microorganisms that typically inhabit the mammalian gut, including that of humans. As they may be vertically transmitted, they commonly colonize the human intestine from the very first day following birth and may persist until adulthood and old age, although generally at a reduced relative abundance and prevalence compared to infancy. The ability of bifidobacteria to persist in the human intestinal environment has been attributed to genes involved in adhesion to epithelial cells and the encoding of complex carbohydrate-degrading enzymes. Recently, a putative mucin-degrading glycosyl hydrolase belonging to the GH136 family and encoded by the perB gene has been implicated in gut persistence of certain bifidobacterial strains. In the current study, to better characterize the function of this gene, a comparative genomic analysis was performed, revealing the presence of perB homologues in just eight bifidobacterial species known to colonize the human gut, including Bifidobacterium bifidum and Bifidobacterium longum subsp. longum strains, or in non-human primates. Mucin-mediated growth and adhesion to human intestinal cells, in addition to a rodent model colonization assay, were performed using B. bifidum PRL2010 as a perB prototype and its isogenic perB-insertion mutant. These results demonstrate that perB inactivation reduces the ability of B. bifidum PRL2010 to grow on and adhere to mucin, as well as to persist in the rodent gut niche. These results corroborate the notion that the perB gene is one of the genetic determinants involved in the persistence of B. bifidum PRL2010 in the human gut.


Assuntos
Bifidobacterium bifidum , Animais , Bifidobacterium bifidum/genética , Bifidobacterium/genética , Células Epiteliais/microbiologia , Mucinas , Mamíferos
7.
Microbiol Spectr ; : e0219423, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37728335

RESUMO

The human organism is inhabited by trillions of microorganisms, known as microbiota, which are considered to exploit a pivotal role in the regulation of host health and immunity. Recent investigations have suggested a relationship between the composition of the human microbiota and COVID-19 infection, highlighting a possible role of bacterial communities in the modulation of the disease severity. In this study, we performed a shotgun metagenomics analysis to explore and compare the nasopharyngeal microbiota of 38 hospitalized Italian patients with and without COVID-19 infection during the third and fourth pandemic waves. In detail, the metagenomic analysis combined with specific correlation analyses suggested a positive association of several microbial species, such as S. parasanguinis and P. melaninogenica, with the severity of COVID-19 infection. Furthermore, the comparison of the microbiota composition between the nasopharyngeal and their respective fecal samples highlighted an association between these different compartments represented by a sharing of several bacterial species. Additionally, lipidomic and deep-shotgun functional analyses of the fecal samples suggested a metabolic impact of the microbiome on the host's immune response, indicating the presence of key metabolic compounds in COVID-19 patients, such as lipid oxidation end products, potentially related to the inflammatory state. Conversely, the patients without COVID-19 displayed enzymatic patterns associated with the biosynthesis and degradation of specific compounds like lysine (synthesis) and phenylalanine (degradation) that could positively impact disease severity and contribute to modulating COVID-19 infection. IMPORTANCE The human microbiota is reported to play a major role in the regulation of host health and immunity, suggesting a possible impact on the severity of COVID-19 disease. This preliminary study investigated the possible correlation between nasopharyngeal microbiota and COVID-19 infection. In detail, the analysis of the nasopharyngeal microbiota of hospitalized Italian patients with and without COVID-19 infection suggested a positive association of several microbial species with the severity of the disease and highlighted a sharing of several bacteria species with the respective fecal samples. Moreover, the metabolic analyses suggested a possible impact of the microbiome on the host's immune response and the disease severity.

8.
Nat Commun ; 14(1): 4220, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452041

RESUMO

Although compositional variation in the gut microbiome during human development has been extensively investigated, strain-resolved dynamic changes remain to be fully uncovered. In the current study, shotgun metagenomic sequencing data of 12,415 fecal microbiomes from healthy individuals are employed for strain-level tracking of gut microbiota members to elucidate its evolving biodiversity across the human life span. This detailed longitudinal meta-analysis reveals host sex-related persistence of strains belonging to common, maternally-inherited species, such as Bifidobacterium bifidum and Bifidobacterium longum subsp. longum. Comparative genome analyses, coupled with experiments including intimate interaction between microbes and human intestinal cells, show that specific bacterial glycosyl hydrolases related to host-glycan metabolism may contribute to more efficient colonization in females compared to males. These findings point to an intriguing ancient sex-specific host-microbe coevolution driving the selective persistence in women of key microbial taxa that may be vertically passed on to the next generation.


Assuntos
Microbioma Gastrointestinal , Microbiota , Masculino , Humanos , Feminino , Microbioma Gastrointestinal/genética , Bifidobacterium/genética , Bifidobacterium/metabolismo , Bactérias/genética
9.
Am J Physiol Cell Physiol ; 325(2): C550-C562, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37458433

RESUMO

SLC38A5/SNAT5 is a system N transporter that can mediate net inward or outward transmembrane fluxes of neutral amino acids coupled with Na+ (symport) and H+ (antiport). Its preferential substrates are not only amino acids with side chains containing amide (glutamine and asparagine) or imidazole (histidine) groups, but also serine, glycine, and alanine are transported by the carrier. Expressed in the pancreas, intestinal tract, brain, liver, bone marrow, and placenta, it is regulated at mRNA and protein levels by mTORC1 and WNT/ß-catenin pathways, and it is sensitive to pH, nutritional stress, inflammation, and hypoxia. SNAT5 expression has been found to be altered in pathological conditions such as chronic inflammatory diseases, gestational complications, chronic metabolic acidosis, and malnutrition. Growing experimental evidence shows that SNAT5 is overexpressed in several types of cancer cells. Moreover, recently published results indicate that SNAT5 expression in stromal cells can support the metabolic exchanges occurring in the tumor microenvironment of asparagine-auxotroph tumors. We review the functional role of the SNAT5 transporter in pathophysiology and propose that, due to its peculiar operational and regulatory features, SNAT5 may play important pro-cancer roles when expressed either in neoplastic or in stromal cells of glutamine-auxotroph tumors.NEW & NOTEWORTHY The transporter SLC38A5/SNAT5 provides net influx or efflux of glutamine, asparagine, and serine. These amino acids are of particular metabolic relevance in several conditions. Changes in transporter expression or activity have been described in selected types of human cancers, where SNAT5 can mediate amino acid exchanges between tumor and stromal cells, thus providing a potential therapeutic target. This is the first review that recapitulates the characteristics and roles of the transporter in physiology and pathology.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Neoplasias , Gravidez , Feminino , Humanos , Glutamina , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Asparagina , Microambiente Tumoral , Sistemas de Transporte de Aminoácidos , Aminoácidos , Serina , Neoplasias/genética
10.
Biomacromolecules ; 24(6): 2892-2907, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37228181

RESUMO

Oral administration of nanoparticles (NPs) is a promising strategy to overcome solubility and stability issues of many active compounds. However, this route faces major obstacles related to the hostile gastrointestinal (GI) environment, which impairs the efficacy of orally administered nanomedicines. Here, we propose nanocomposites as a promising approach to increase the retention time of NPs in the intestinal tract by using bio- and mucoadhesive matrixes able to protect the cargo until it reaches the targeted area. A microfluidic-based approach has been applied for the production of tailored nanoemulsions (NEs) of about 110 nm, used for the encapsulation of small hydrophobic drugs such as the anti-inflammatory JAK-inhibitor tofacitinib. These NEs proved to be efficiently internalized into a mucus-secreting human intestinal monolayer of Caco-2/HT29-MTX cells and to deliver tofacitinib to subepithelial human THP-1 macrophage-like cells, reducing their inflammatory response. NEs were then successfully encapsulated into alginate hydrogel microbeads of around 300 µm, which were characterized by rheological experiments and dried to create a long-term stable system for pharmaceutical applications. Finally, ex vivo experiments on excised segments of rats' intestine proved the bioadhesive ability of NEs embedded in alginate hydrogels compared to free NEs, showing the advantage that this hybrid system can offer for the treatment of intestinal pathologies.


Assuntos
Alginatos , Nanopartículas , Ratos , Humanos , Animais , Alginatos/química , Células CACO-2 , Intestinos , Anti-Inflamatórios , Administração Oral , Hidrogéis , Nanopartículas/química , Sistemas de Liberação de Medicamentos
11.
Pharmaceuticals (Basel) ; 16(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36986463

RESUMO

This real-world analysis aims to estimate the epidemiology and economic burden related to early-stage non-small-cell lung carcinoma (eNSCLC) in the clinical practice Italian setting. An observational analysis was performed using administrative databases linked to pathological anatomy data, covering around 2.5 mln health-assisted individuals. From 2015 to mid-2021, eNSCLC patients staged II-IIIA treated with chemotherapy after surgery were included. Patients were stratified into those presenting loco-regional or metastatic recurrence during follow-up and annualized healthcare direct costs covered by the Italian National Health System (INHS) were estimated. In 2019-2020, the prevalence of eNSCLC was 104.3-117.1/million health-assisted subjects, and the annual incidence was 38.6-30.3/million. Data projected to the Italian population estimated 6206 (2019) and 6967 (2020) prevalent and 2297 (2019) and 1803 (2020) incident cases. Overall, 458 eNSCLC patients were included. Of them, 52.4% of patients had a recurrence (5% loco-regional-recurrence, 47.4% metastatic-recurrence). Healthcare total direct costs/patient averaged EUR 23,607, in particular, in the first year after recurrence, costs averaged EUR 22,493 and EUR 29,337 in loco-regional and metastatic-recurrence patients, respectively. This analysis showed that about one-half of eNSCLC patients stage II-IIIA experience a recurrence, and in recurrence patients, total direct costs were almost two-fold those of no-recurrence patients. These data highlighted an unmet clinical need, as the therapeutic optimization of patients at early stages.

12.
Front Microbiol ; 14: 1130592, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846784

RESUMO

Bifidobacteria are extensively exploited for the formulation of probiotic food supplements due to their claimed ability to exert health-beneficial effects upon their host. However, most commercialized probiotics are tested and selected for their safety features rather than for their effective abilities to interact with the host and/or other intestinal microbial players. In this study, we applied an ecological and phylogenomic-driven selection to identify novel B. longum subsp. longum strains with a presumed high fitness in the human gut. Such analyses allowed the identification of a prototype microorganism to investigate the genetic traits encompassed by the autochthonous bifidobacterial human gut communities. B. longum subsp. longum PRL2022 was selected due to its close genomic relationship with the calculated model representative of the adult human-gut associated B. longum subsp. longum taxon. The interactomic features of PRL2022 with the human host as well as with key representative intestinal microbial members were assayed using in vitro models, revealing how this bifidobacterial gut strain is able to establish extensive cross-talk with both the host and other microbial residents of the human intestine.

13.
Environ Microbiol ; 24(12): 5825-5839, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36123315

RESUMO

The genomic era has resulted in the generation of a massive amount of genetic data concerning the genomic diversity of bacterial taxa. As a result, the microbiological community is increasingly looking for ways to define reference bacterial strains to perform experiments that are representative of the entire bacterial species. Despite this, there is currently no established approach allowing a reliable identification of reference strains based on a comprehensive genomic, ecological, and functional context. In the current study, we developed a comprehensive multi-omics approach that will allow the identification of the optimal reference strains using the Bifidobacterium genus as test case. Strain tracking analysis based on 1664 shotgun metagenomics datasets of healthy infant faecal samples were employed to identify bifidobacterial strains suitable for in silico and in vitro analyses. Subsequently, an ad hoc bioinformatic tool was developed to screen local strain collections for the most suitable species-representative strain alternative. The here presented approach was validated using in vitro trials followed by metagenomics and metatranscriptomics analyses. Altogether, these results demonstrated the validity of the proposed model for reference strain selection, thus allowing improved in silico and in vitro investigations both in terms of cross-laboratory reproducibility and relevance of research findings.


Assuntos
Bifidobacterium , Multiômica , Humanos , Lactente , Bifidobacterium/genética , Reprodutibilidade dos Testes , Fezes/microbiologia , Metagenômica , Bactérias
14.
Nanomaterials (Basel) ; 12(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35808143

RESUMO

Amorphous silica nanoparticles (ASNP) are present in a variety of products and their biological effects are actively investigated. Although several studies have documented pro-inflammatory effects of ASNP, the possibility that they also modify the response of innate immunity cells to natural activators has not been thoroughly investigated. Here, we study the effects of pyrogenic ASNP on the LPS-dependent activation of human macrophages differentiated from peripheral blood monocytes. In macrophages, 24 h of pre-exposure to non-cytotoxic doses of ASNP markedly inhibited the LPS-dependent induction of pro-inflammatory (TNFα, IL-6) and anti-inflammatory cytokines (IL-10). The inhibitory effect was associated with the suppression of NFκB activation and the increased intracellular sequestration of the TLR4 receptor. The late induction of glutamine synthetase (GS) by LPS was also prevented by pre-exposure to ASNP, while GS silencing did not interfere with cytokine secretion. It is concluded that (i) macrophages exposed to ASNP are less sensitive to LPS-dependent activation and (ii) GS induction by LPS is likely secondary to the stimulation of cytokine secretion. The observed interference with LPS effects may point to a dampening of the acute inflammatory response after exposure to ASNP in humans.

15.
Mol Metab ; 63: 101532, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35752287

RESUMO

Bone marrow mesenchymal stromal cells (MSCs) have immunomodulatory and regenerative potential. However, culture conditions govern their metabolic processes and therapeutic efficacy. Here we show that culturing donor-derived MSCs in Plasmax™, a physiological medium with the concentrations of nutrients found in human plasma, supports their proliferation and stemness, and prevents the nutritional stress induced by the conventional medium DMEM. The quantification of the exchange rates of metabolites between cells and medium, untargeted metabolomics, stable isotope tracing and transcriptomic analysis, performed at physiologically relevant oxygen concentrations (1%O2), reveal that MSCs rely on a high rate of glucose to lactate conversion, coupled with parallel anaplerotic fluxes from glutamine and glutamate to support citrate synthesis and secretion. These distinctive traits of MSCs shape the metabolic microenvironment of the bone marrow niche and can influence nutrient cross-talks under physiological and pathological conditions.


Assuntos
Células da Medula Óssea , Células-Tronco Mesenquimais , Citratos/metabolismo , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo
16.
Blood Adv ; 5(23): 5164-5178, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34614505

RESUMO

Mechanisms underlying the resistance of acute lymphoblastic leukemia (ALL) blasts to l-asparaginase are still incompletely known. Here we demonstrate that human primary bone marrow mesenchymal stromal cells (MSCs) successfully adapt to l-asparaginase and markedly protect leukemic blasts from the enzyme-dependent cytotoxicity through an amino acid trade-off. ALL blasts synthesize and secrete glutamine, thus increasing extracellular glutamine availability for stromal cells. In turn, MSCs use glutamine, either synthesized through glutamine synthetase (GS) or imported, to produce asparagine, which is then extruded to sustain asparagine-auxotroph leukemic cells. GS inhibition prevents mesenchymal cells adaptation to l-asparaginase, lowers glutamine secretion by ALL blasts, and markedly hinders the protection exerted by MSCs on leukemic cells. The pro-survival amino acid exchange is hindered by the inhibition or silencing of the asparagine efflux transporter SNAT5, which is induced in mesenchymal cells by ALL blasts. Consistently, primary MSCs from ALL patients express higher levels of SNAT5 (P < .05), secrete more asparagine (P < .05), and protect leukemic blasts (P < .05) better than MSCs isolated from healthy donors. In conclusion, ALL blasts arrange a pro-leukemic amino acid trade-off with bone marrow mesenchymal cells, which depends on GS and SNAT5 and promotes leukemic cell survival during l-asparaginase treatment.


Assuntos
Células-Tronco Mesenquimais , Leucemia-Linfoma Linfoblástico de Células Precursoras , Asparaginase , Asparagina , Células da Medula Óssea , Humanos
17.
Front Oncol ; 11: 760732, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712616

RESUMO

The high glycolytic activity of multiple myeloma (MM) cells is the rationale for use of Positron Emission Tomography (PET) with 18F-fluorodeoxyglucose ([18F]FDG) to detect both bone marrow (BM) and extramedullary disease. However, new tracers are actively searched because [18F]FDG-PET has some limitations and there is a portion of MM patients who are negative. Glutamine (Gln) addiction has been recently described as a typical metabolic feature of MM cells. Yet, the possible exploitation of Gln as a PET tracer in MM has never been assessed so far and is investigated in this study in preclinical models. Firstly, we have synthesized enantiopure (2S,4R)-4-fluoroglutamine (4-FGln) and validated it as a Gln transport analogue in human MM cell lines, comparing its uptake with that of 3H-labelled Gln. We then radiosynthesized [18F]4-FGln, tested its uptake in two different in vivo murine MM models, and checked the effect of Bortezomib, a proteasome inhibitor currently used in the treatment of MM. Both [18F]4-FGln and [18F]FDG clearly identified the spleen as site of MM cell colonization in C57BL/6 mice, challenged with syngeneic Vk12598 cells and assessed by PET. NOD.SCID mice, subcutaneously injected with human MM JJN3 cells, showed high values of both [18F]4-FGln and [18F]FDG uptake. Bortezomib significantly reduced the uptake of both radiopharmaceuticals in comparison with vehicle at post treatment PET. However, a reduction of glutaminolytic, but not of glycolytic, tumor volume was evident in mice showing the highest response to Bortezomib. Our data indicate that [18F](2S,4R)-4-FGln is a new PET tracer in preclinical MM models, yielding a rationale to design studies in MM patients.

18.
Front Cell Dev Biol ; 9: 714755, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277645

RESUMO

Within the bone marrow hematopoietic cells are in close connection with mesenchymal stromal cells (MSCs), which influence the behavior and differentiation of normal or malignant lymphoid and myeloid cells. Altered cell metabolism is a hallmark of cancer, and changes in nutrient pools and fluxes are important components of the bidirectional communication between MSCs and hematological cancer cells. Among nutrients, amino acids play a significant role in cancer progression and chemo-resistance. Moreover, selected types of cancer cells are extremely greedy for glutamine, and significantly deplete the extracellular pool of the amino acid. As a consequence, this influences the behavior of MSCs in terms of either cytokine/chemokine secretion or differentiation potential. Additionally, a direct nutritional interaction exists between MSCs and immune cells. In particular, selected subpopulations of lymphocytes are dependent upon selected amino acids, such as arginine and tryptophan, for full differentiation and competence. This review describes and discusses the nutritional interactions existing in the neoplastic bone marrow niche between MSCs and other cell types, with a particular emphasis on cancer cells and immune cells. These relationships are discussed in the perspective of potential novel therapeutic strategies based on the interference on amino acid metabolism or intercellular fluxes.

19.
Cancers (Basel) ; 12(11)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167336

RESUMO

Multiple myeloma (MM) cells consume huge amounts of glutamine and, as a consequence, the amino acid concentration is lower-than-normal in the bone marrow (BM) of MM patients. Here we show that MM-dependent glutamine depletion induces glutamine synthetase in stromal cells, as demonstrated in BM biopsies of MM patients, and reproduced in vitro by co-culturing human mesenchymal stromal cells (MSCs) with MM cells. Moreover, glutamine depletion hinders osteoblast differentiation of MSCs, which is also severely blunted by the spent, low-glutamine medium of MM cells, and rescued by glutamine restitution. Glutaminase and the concentrative glutamine transporter SNAT2 are induced during osteoblastogenesis in vivo and in vitro, and both needed for MSCs differentiation, pointing to enhanced the requirement for the amino acid. Osteoblastogenesis also triggers the induction of glutamine-dependent asparagine synthetase (ASNS), and, among non-essential amino acids, asparagine rescues differentiation of glutamine-starved MSCs, by restoring the transcriptional profiles of differentiating MSCs altered by glutamine starvation. Thus, reduced asparagine availability provides a mechanistic link between MM-dependent Gln depletion in BM and impairment of osteoblast differentiation. Inhibition of Gln metabolism in MM cells and supplementation of asparagine to stromal cells may, therefore, constitute novel approaches to prevent osteolytic lesions in MM.

20.
Nanomaterials (Basel) ; 10(7)2020 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-32708373

RESUMO

Previous work has demonstrated that precipitated (NM-200) and pyrogenic (NM-203) Amorphous Silica Nanoparticles (ASNPs) elicit the inflammatory activation of murine macrophages, with more pronounced effects observed with NM-203. Here, we compare the effects of low doses of NM-200 and NM-203 on human macrophage-like THP-1 cells, assessing how the pre-exposure to these nanomaterials affects the cell response to lipopolysaccharide (LPS). Cell viability was affected by NM-203, but not by NM-200, and only in the presence of LPS. While NM-203 stimulated mTORC1, neither ASNPs activated NFκB or the transcription of its target genes PTGS2 and IL1B. NM-200 and NM-203 caused a block of the autophagic flux and inhibited the LPS-dependent increase of Glutamine Synthetase (GS) expression. Both ASNPs suppressed the activation of caspase-1, delaying the LPS-dependent secretion of IL-1ß. Thus, ASNPs modulate several important pathways in human macrophages, altering their response to LPS. NM-203 had larger effects on autophagy, mTORC1 activity and GS expression than NM-200, confirming the higher biological activity of pyrogenic ASNPs when compared with precipitated ASNPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...