Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Cell Mol Bioeng ; 17(2): 107-119, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38737455

RESUMO

Solid tumors often contain genetically different populations of cancer cells, stromal cells, various structural and soluble proteins, and other soluble signaling molecules. The American Cancer society estimated 1,958,310 new cancer cases and 609,820 cancer deaths in the United States in 2023. A major barrier against successful treatment of cancer patients is drug resistance. Gain of stem cell-like states by cancer cells under drug pressure or due to interactions with the tumor microenvironment is a major mechanism that renders therapies ineffective. Identifying approaches to target cancer stem cells is expected to improve treatment outcomes for patients. Most of our understanding of drug resistance and the role of cancer stemness is from monolayer cell cultures. Recent advances in cell culture technologies have enabled developing sophisticated three-dimensional tumor models that facilitate mechanistic studies of cancer drug resistance. This review summarizes the role of cancer stemness in drug resistance and highlights the various tumor models that are used to discover the underlying mechanisms and test potentially novel therapeutics.

2.
Adv Biol (Weinh) ; 8(2): e2300386, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37845003

RESUMO

In metabolically active tumors, responses of cells to drugs are heavily influenced by oxygen availability via the surrounding vasculature alongside the extracellular matrix signaling. The objective of this study is to investigate hepatotoxicity by replicating critical features of hepatocellular carcinoma (HCC). This includes replicating 3D structures, metabolic activities, and tumor-specific markers. The internal environment of spheroids comprised of cancerous human patient-derived hepatocytes using microparticles is modulated to enhance the oxygenation state and recreate cell-extracellular matrix interactions. Furthermore, the role of hepatic stellate cells in maintaining hepatocyte survival and function is explored and hepatocytes from two cellular sources (immortalized and patient-derived) to create four formulations with and without microparticles are utilized. To investigate drug-induced changes in metabolism and apoptosis in liver cells, coculture spheroids with and without microparticles are exposed to three hepatotoxic drugs. The use of microparticles increases levels of apoptotic markers in both liver models under drug treatments. This coincides with reduced levels of anti-apoptotic proteins and increased levels of pro-apoptotic proteins. Moreover, cells from different origins undergo apoptosis through distinct apoptotic pathways in response to identical drugs. This 3D microphysiological system offers a viable tool for liver cancer research to investigate mechanisms of apoptosis under different microenvironmental conditions.


Assuntos
Carcinoma Hepatocelular , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Técnicas de Cocultura , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Linhagem Celular
3.
Oncotarget ; 14: 879-889, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37791907

RESUMO

Drug resistance is a major barrier against successful treatments of cancer patients. Gain of stemness under drug pressure is a major mechanism that renders treatments ineffective. Identifying approaches to target cancer stem cells (CSCs) is expected to improve treatment outcomes for patients. To elucidate the role of cancer stemness in resistance of colorectal cancer cells to targeted therapies, we developed spheroid cultures of patient-derived BRAFmut and KRASmut tumor cells and studied resistance mechanisms to inhibition of MAPK pathway through phenotypic and gene and protein expression analysis. We found that treatments enriched the expression of CSC markers CD166, ALDH1A3, CD133, and LGR5 and activated PI3K/Akt pathway in cancer cells. We examined various combination treatments to block these activities and found that a triple combination against BRAF, EGFR, and MEK significantly reduced stemness and activities of oncogenic signaling pathways. This study demonstrates the feasibility of blocking stemness-mediated drug resistance and tumorigenic activities in colorectal cancer.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas B-raf , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Fosfatidilinositol 3-Quinases , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Receptores ErbB , Quinases de Proteína Quinase Ativadas por Mitógeno
5.
J Biomech Eng ; 145(2)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36056568

RESUMO

Neonatal respiratory distress syndrome is mainly treated with the intratracheal delivery of pulmonary surfactants. The success of the therapy depends on the uniformity of distribution and efficiency of delivery of the instilled surfactant solution to the respiratory zone of the lungs. Direct imaging of the surfactant distribution and quantifying the efficiency of delivery is not feasible in neonates. To address this major limitation, we designed an eight-generation computational model of neonate lung airway tree using morphometric and geometric data of human lungs and fabricated it using additive manufacturing. Using this model, we performed systematic studies of delivery of a clinical surfactant either at a single aliquot or at two aliquots under different orientations of the airway tree in the gravitational space to mimic rolling a neonate on its side during the procedure. Our study offers both a novel lung airway model and new insights into effects of the orientation of the lung airways and presence of a pre-existing surfactant film on how the instilled surfactant solution distributes in airways.


Assuntos
Surfactantes Pulmonares , Humanos , Recém-Nascido , Pulmão , Surfactantes Pulmonares/farmacologia , Surfactantes Pulmonares/uso terapêutico , Tensoativos/farmacologia
6.
ACS Pharmacol Transl Sci ; 5(9): 724-734, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36110381

RESUMO

Drug resistance is a leading cause for the failure of cancer treatments. Plasticity of cancer cells to acquire stem cell-like properties enables them to escape drug toxicity through different adaptive mechanisms. Eliminating cancer stem cells (CSCs) can potentially improve treatment outcomes for patients. To determine the role of CSCs in resistance of colorectal cancer cells to targeted therapies and identify treatment strategies, we treated spheroids of BRAFmut and KRASmut colorectal cancer cells with inhibitors of the mitogen-activated protein kinase pathway and studied resistance mechanisms through gene and protein expression analyses. We found that treatments activated several oncogenic pathways and expression of CSC markers CD166 and ALDH1A3. We identified a specific combination treatment using trametinib and mithramycin A to simultaneously inhibit the CSC phenotype and activities of several pathways in cancer cells. This study demonstrates the feasibility of therapeutic targeting of CSCs as a strategy to block tumorigenic activities of cancer cells.

7.
JAMA Netw Open ; 5(4): e224361, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35416993

RESUMO

Importance: Hormone receptor-positive, ERBB2 (formerly HER2/neu)-negative metastatic breast cancer (HR-positive, ERBB2-negative MBC) is treated with targeted therapy, endocrine therapy, chemotherapy, or combinations of these modalities; however, evaluating the increasing number of treatment options is challenging because few regimens have been directly compared in randomized clinical trials (RCTs), and evidence has evolved over decades. Information theoretic network meta-analysis (IT-NMA) is a graph theory-based approach for regimen ranking that takes effect sizes and temporality of evidence into account. Objective: To examine the performance of an IT-NMA approach to rank HR-positive, ERBB2-negative MBC treatment regimens. Data Sources: HemOnc.org, a freely available medical online resource of interventions, regimens, and general information relevant to the fields of hematology and oncology, was used to identify relevant RCTs. Study Selection: All primary and subsequent reports of RCTs of first-line systemic treatments for HR-positive, ERBB2-negative MBC that were referenced on HemOnc.org and published between 1974 and 2019 were included. Additional RCTs that were evaluated by a prior traditional network meta-analysis on HR-positive, ERBB2-negative MBC were also included. Data Extraction and Synthesis: RCTs were independently extracted from HemOnc.org and a traditional NMA by separate observers. This study followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline for NMA with several exceptions: the risk of bias within individual studies and inconsistency in the treatment network were not assessed. Main Outcomes and Measures: Regimen rankings generated by IT-NMA based on clinical trial variables, including primary end point, enrollment number per trial arm, P value, effect size, years of enrollment, and year of publication. Results: A total of 203 RCTs with 63 629 patients encompassing 252 distinct regimens were compared by IT-NMA, which resulted in 151 rankings as of 2019. Combinations of targeted and endocrine therapy were highly ranked, especially the combination of endocrine therapy with cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors. For example, letrozole plus palbociclib was ranked first and letrozole plus ribociclib, third. Older monotherapies that continue to be used in RCTs in comparator groups, such as anastrozole (251 of 252) and letrozole (252), fell to the bottom of the rankings. Many regimens gravitated toward indeterminacy by 2019. Conclusions and Relevance: In this network meta-analysis study, combination therapies appeared to be associated with better outcomes than monotherapies in the treatment of HR-positive, ERBB2-negative MBC. These findings suggest that IT-NMA is a promising method for longitudinal ranking of anticancer regimens from RCTs with different end points, sparse interconnectivity, and decades-long timeframes.


Assuntos
Neoplasias da Mama , Inibidores da Aromatase/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Humanos , Letrozol/uso terapêutico , Metanálise em Rede , Ensaios Clínicos Controlados Aleatórios como Assunto , Receptor ErbB-2
8.
Mol Cancer Res ; 20(7): 1166-1177, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35348758

RESUMO

The tumor microenvironment (TME) promotes proliferation, drug resistance, and invasiveness of cancer cells. Therapeutic targeting of the TME is an attractive strategy to improve outcomes for patients, particularly in aggressive cancers such as triple-negative breast cancer (TNBC) that have a rich stroma and limited targeted therapies. However, lack of preclinical human tumor models for mechanistic understanding of tumor-stromal interactions has been an impediment to identify effective treatments against the TME. To address this need, we developed a three-dimensional organotypic tumor model to study interactions of patient-derived cancer-associated fibroblasts (CAF) with TNBC cells and explore potential therapy targets. We found that CAFs predominantly secreted hepatocyte growth factor (HGF) and activated MET receptor tyrosine kinase in TNBC cells. This tumor-stromal interaction promoted invasiveness, epithelial-to-mesenchymal transition, and activities of multiple oncogenic pathways in TNBC cells. Importantly, we established that TNBC cells become resistant to monotherapy and demonstrated a design-driven approach to select drug combinations that effectively inhibit prometastatic functions of TNBC cells. Our study also showed that HGF from lung fibroblasts promotes colony formation by TNBC cells, suggesting that blocking HGF-MET signaling potentially could target both primary TNBC tumorigenesis and lung metastasis. Overall, we established the utility of our organotypic tumor model to identify and therapeutically target specific mechanisms of tumor-stromal interactions in TNBC toward the goal of developing targeted therapies against the TME. IMPLICATIONS: Leveraging a state-of-the-art organotypic tumor model, we demonstrated that CAFs-mediated HGF-MET signaling drive tumorigenic activities in TNBC and presents a therapeutic target.


Assuntos
Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Proliferação de Células , Fator de Crescimento de Hepatócito , Humanos , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Microambiente Tumoral
9.
Exp Biol Med (Maywood) ; 246(22): 2372-2380, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34102903

RESUMO

Drug resistance is a major barrier against successful treatments of cancer patients. Various intrinsic mechanisms and adaptive responses of tumor cells to cancer drugs often lead to failure of treatments and tumor relapse. Understanding mechanisms of cancer drug resistance is critical to develop effective treatments with sustained anti-tumor effects. Three-dimensional cultures of cancer cells known as spheroids present a biologically relevant model of avascular tumors and have been increasingly incorporated in tumor biology and cancer drug discovery studies. In this review, we discuss several recent studies from our group that utilized colorectal tumor spheroids to investigate responses of cancer cells to cytotoxic and molecularly targeted drugs and uncover mechanisms of drug resistance. We highlight our findings from both short-term, one-time treatments and long-term, cyclic treatments of tumor spheroids and discuss mechanisms of adaptation of cancer cells to the treatments. Guided by mechanisms of resistance, we demonstrate the feasibility of designing specific drug combinations to effectively block growth and resistance of cancer cells in spheroid cultures. Finally, we conclude with our perspectives on the utility of three-dimensional tumor models and their shortcomings and advantages for phenotypic and mechanistic studies of cancer drug resistance.


Assuntos
Neoplasias Colorretais/terapia , Resistencia a Medicamentos Antineoplásicos , Esferoides Celulares/transplante , Células Tumorais Cultivadas/transplante , Animais , Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Humanos
10.
SLAS Technol ; 26(3): 255-264, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33880947

RESUMO

Resistance to single-agent chemotherapy and molecularly targeted drugs prevents sustained efficacy of treatments. To address this challenge, combination drug treatments have been used to improve outcomes for patients. Potential toxicity of combination treatments is a major concern, however, and has led to the failure of several clinical trials in different cancers. The use of cell-based models of normal tissues in preclinical studies enables testing and identifying toxic effects of drug combinations and facilitates an informed decision-making process for advancing the treatments to animal models and clinical trials. Recently, we established that combinations of molecular inhibitors of mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase-protein kinase B (PI3K/Akt) pathways effectively and synergistically inhibit growth of BRAFmut and KRASmut colorectal tumor spheroids by blocking feedback signaling of downstream kinase pathways. These pathways are important for cell proliferation, however, and their simultaneous inhibition may cause toxicity to normal cells. We used a cellular spheroid model to study toxicities of drug combinations to human bone marrow and colon. Our results indicated that MAPK and PI3K/Akt inhibitors used simultaneously were only moderately toxic to bone marrow cells but significantly more toxic to colon cells. Our molecular analysis of proliferative cell activities and housekeeping proteins further corroborated these results. Overall, our approach to identify toxic effects of combinations of cancer drugs to normal cells in three-dimensional cultures will facilitate more informed treatment selections for subsequent animal studies.


Assuntos
Antineoplásicos , Fosfatidilinositol 3-Quinases , Animais , Antineoplásicos/toxicidade , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/toxicidade , Transdução de Sinais
11.
ACS Pharmacol Transl Sci ; 3(6): 1176-1187, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33344895

RESUMO

Single-agent drug treatment of KRASmut colorectal cancers is often ineffective because the activation of compensatory signaling pathways leads to drug resistance. To mimic cyclic chemotherapy treatments of patients, we showed that intermittent treatments of 3D tumor spheroids of KRASmut colorectal cancer cells with inhibitors of mitogen-activated protein kinase (MAPK) signaling pathway temporarily suppressed growth of spheroids. However, the efficacy of successive single-agent treatments was significantly reduced. Molecular analysis showed compensatory activation of PI3K/AKT and STAT kinases and EGFR family proteins. To overcome the adaptation of cancer cells to MAPK pathway inhibitors, we treated tumor spheroids with a combination of MEK and EGFR inhibitors. This approach significantly blocked signaling of MAPK and PI3K/AKT pathways and prevented the growth of spheroids, but it was not effective against STAT signaling. Although the combination treatment blocked the matrix invasion of DLD1 cells, additional treatments with STAT inhibitors were necessary to prevent invasiveness of HCT116 cells. Overall, our drug resistance model elucidated the mechanisms of treatment-induced growth and invasiveness of cancer cells and allowed design-driven testing and identifying of effective treatments to suppress these phenotypes.

12.
PLoS One ; 15(6): e0234958, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32574185

RESUMO

Proteases play an essential role in living organisms and represent one of the largest groups of industrial enzymes. The aim of this work was recombinant production and characterization of a newly identified thermostable protease 1147 from thermophilum indigenous Cohnella sp. A01. Phylogenetic tree analysis showed that protease 1147 is closely related to the cysteine proteases from DJ-1/ThiJ/PfpI superfamily, with the conserved catalytic tetrad. Structural prediction using MODELLER 9v7 indicated that protease 1147 has an overall α/ß sandwich tertiary structure. The gene of protease 1147 was cloned and expressed in Escherichia coli (E. coli) BL21. The recombinant protease 1147 appeared as a homogenous band of 18 kDa in SDS-PAGE, which was verified by western blot and zymography. The recombinant protein was purified with a yield of approximately 88% in a single step using Ni-NTA affinity chromatography. Furthermore, a rapid one-step thermal shock procedure was successfully implemented to purify the protein with a yield of 73%. Using casein as the substrate, Km, and kcat, kcat/Km values of 13.72 mM, 3.143 × 10-3 (s-1), and 0.381 (M-1 S-1) were obtained, respectively. The maximum protease activity was detected at pH = 7 and 60°C with the inactivation rate constant (kin) of 2.10 × 10-3 (m-1), and half-life (t1/2) of 330.07 min. Protease 1147 exhibited excellent stability to organic solvent, metal ions, and 1% SDS. The protease activity was significantly enhanced by Tween 20 and Tween 80 and suppressed by cysteine protease specific inhibitors. Docking results and molecular dynamics (MD) simulation revealed that Tween 20 interacted with protease 1147 via hydrogen bonds and made the structure more stable. CD and fluorescence spectra indicated structural changes taking place at 100°C, very basic and acidic pH, and in the presence of Tween 20. These properties make this newly characterized protease a potential candidate for various biotechnological applications.


Assuntos
Bacillales/enzimologia , Proteínas de Bactérias/química , Peptídeo Hidrolases/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/ultraestrutura , Clonagem Molecular , Ensaios Enzimáticos , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Peso Molecular , Peptídeo Hidrolases/isolamento & purificação , Peptídeo Hidrolases/ultraestrutura , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/ultraestrutura , Especificidade por Substrato
13.
Exp Biol Med (Maywood) ; 245(10): 879-888, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32276543

RESUMO

IMPACT STATEMENT: Tumor stroma plays an important role in progression of cancers to a fatal metastatic disease. Modern treatment strategies are considering targeting tumor stroma to improve outcomes for cancer patients. A current challenge to develop stroma-targeting therapeutics is the lack of preclinical physiologic tumor models. Animal models widely used in cancer research lack human stroma and are not amenable to screening of chemical compounds for cancer drug discovery. In this review, we outline in vitro three-dimensional tumor models that we have developed to study the interactions among cancer cells and stromal cells. We describe development of the tumor models in a modular fashion, from a spheroid model to a sophisticated organotypic model, and discuss the importance of using correct physiologic models to recapitulate tumor-stromal signaling. These biomimetic tumor models will facilitate understanding of tumor-stromal signaling biology and provide a scalable approach for testing and discovery of cancer drugs.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Esferoides Celulares , Engenharia Tecidual/métodos , Microambiente Tumoral , Técnicas de Cocultura/métodos , Feminino , Humanos , Células Tumorais Cultivadas
14.
Biomaterials ; 238: 119853, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32062146

RESUMO

Fibroblasts are a critical component of tumor microenvironments and associate with cancer cells physically and biochemically during different stages of the disease. Existing cell culture models to study interactions between fibroblasts and cancer cells lack native tumor architecture or scalability. We developed a scalable organotypic model by robotically encapsulating a triple negative breast cancer (TNBC) cell spheroid within a natural extracellular matrix containing dispersed fibroblasts. We utilized an established CXCL12 - CXCR4 chemokine-receptor signaling in breast tumors to validate our model. Using imaging techniques and molecular analyses, we demonstrated that CXCL12-secreting fibroblasts have elevated activity of RhoA/ROCK/myosin light chain-2 pathway and rapidly and significantly contract collagen matrices. Signaling between TNBC cells and CXCL12-producing fibroblasts promoted matrix invasion of cancer cells by activating oncogenic mitogen-activated protein kinase signaling, whereas normal fibroblasts significantly diminished TNBC cell invasiveness. We demonstrated that disrupting CXCL12 - CXCR4 signaling using a molecular inhibitor significantly inhibited invasiveness of cancer cells, suggesting blocking of tumor-stromal interactions as a therapeutic strategy especially for cancers such as TNBC that lack targeted therapies. Our organotypic tumor model mimics native solid tumors, enables modular addition of different stromal cells and extracellular matrix proteins, and allows high throughput compound screening against tumor-stromal interactions to identify novel therapeutics.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Mama , Linhagem Celular Tumoral , Fibroblastos , Humanos , Invasividade Neoplásica , Microambiente Tumoral
15.
BMC Cancer ; 20(1): 4, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31898540

RESUMO

BACKGROUND: Cell migration and invasion are essential processes for metastatic dissemination of cancer cells. Significant progress has been made in developing new therapies against oncogenic signaling to eliminate cancer cells and shrink tumors. However, inherent heterogeneity and treatment-induced adaptation to drugs commonly enable subsets of cancer cells to survive therapy. In addition to local recurrence, these cells escape a primary tumor and migrate through the stroma to access the circulation and metastasize to different organs, leading to an incurable disease. As such, therapeutics that block migration and invasion of cancer cells may inhibit or reduce metastasis and significantly improve cancer therapy. This is particularly more important for cancers, such as triple negative breast cancer, that currently lack targeted drugs. METHODS: We used cell migration, 3D invasion, zebrafish metastasis model, and phosphorylation analysis of 43 protein kinases in nine triple negative breast cancer (TNBC) cell lines to study effects of fisetin and quercetin on inhibition of TNBC cell migration, invasion, and metastasis. RESULTS: Fisetin and quercetin were highly effective against migration of all nine TNBC cell lines with up to 76 and 74% inhibitory effects, respectively. In addition, treatments significantly reduced 3D invasion of highly motile TNBC cells from spheroids into a collagen matrix and their metastasis in vivo. Fisetin and quercetin commonly targeted different components and substrates of the oncogenic PI3K/AKT pathway and significantly reduced their activities. Additionally, both compounds disrupted activities of several protein kinases in MAPK and STAT pathways. We used molecular inhibitors specific to these signaling proteins to establish the migration-inhibitory role of the two phytochemicals against TNBC cells. CONCLUSIONS: We established that fisetin and quercetin potently inhibit migration of metastatic TNBC cells by interfering with activities of oncogenic protein kinases in multiple pathways.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Compostos Fitoquímicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Compostos Fitoquímicos/química , Inibidores de Proteínas Quinases/química , Proteoma , Proteômica/métodos , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/metabolismo , Peixe-Zebra
16.
Heliyon ; 5(12): e02940, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31872119

RESUMO

BACKGROUND: Pristine carbon dots (CDs) derived from citric acid pyrolysis are used in a variety of biomedical research such as imaging and drug delivery. However, potential cytotoxic effects of pyrolysis temperature on cells is underexplored. To address this need, we studied toxicity of the CDs to breast cancer cells using MTT and LDH assays. In addition, we investigated photo-induced cytotoxicity of the synthesized CDs in a wide concentration range under white light. RESULTS: Our results suggest little cytotoxicity of the CDs after 24 h exposure of cells. Only the high quantum yield CDs caused a significant toxicity to cells at the highest concentrations of 2.0 and 1.5 mg/ml compared to other CDs at similar concentrations. The synthesized CDs entered the cells without any significant cytotoxicity. The CDs also caused a concentration- and irradiation time-dependent photo-induced cytotoxicity. CONCLUSION: The optimization of synthesis conditions from this study may help develop safe and efficient CDs for imaging and drug delivery.

17.
Int J Biol Macromol ; 139: 1028-1034, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31404600

RESUMO

We report cloning and expressing of recombinant human VEGF-A165, fused at the N-terminal with Hydrophobin II (HFBII) from Trichoderma reseei, in yeast Pichia pastoris. We validated the construct using SDS-PAGE and ELISA against VEGF-A165 and efficiently performed protein purification and enrichment based on HFBII counterpart and using an aqueous two-phase system (ATPS) with nonionic surfactant X-114. We studied the effects of various culture medium additives and interaction effects of positive factors to increase the recombinant HFBII-VEGF-A165 production. Supplementing the Pichia pastoris cell culture medium with Mg2+, Polysorbate 20 (PS 20), and 4-phenylbutyrate (PBA) improved the expression of the chimeric protein. Orthogonal experiments showed that the optimal condition to achieve maximal HFBII-VEGF-A165 production was with the addition of PBA, PS 20, and MgSO4. Under this condition, the production of the target protein was 4.5 times more than that in the medium without the additives. Overall, our approach to produce chimeric HFBII-VEGF-A165 and selectively capture it in ATPS is promising for large-scale protein production without laborious downstream processing.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Pichia/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Fator A de Crescimento do Endotélio Vascular/genética , Anticorpos Imobilizados/química , Anticorpos Imobilizados/metabolismo , Proliferação de Células , Proteínas Fúngicas/metabolismo , Expressão Gênica , Pichia/citologia , Ranibizumab/química , Ranibizumab/metabolismo , Trichoderma/genética
18.
EXCLI J ; 18: 454-466, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31423124

RESUMO

Carbon dots (CDs) have outstanding optical properties, biocompatibility, and photostability, making them attractive for imaging applications. A facile and green one-step hydrothermal synthesis method is proposed, which can be safely used in a wide range of applications such as chemical sensing, bioimaging, and optoelectronics. In this study, we report green synthesis of carbon dots from bitter orange juice (Citrus Aurantium) by hydrothermal treatment for the first time. We studied effects of time, temperature, and pH on fluorescence of CDs, characterized them using various spectroscopic and microscopic methods, and evaluated their toxicity to different cell lines. Identifying an optimum reaction condition of 180 ºC for 7 h heating gave CDs that showed pH-dependent fluorescence, with the largest fluorescence at a pH of 7.0. The CDs were 1-2 nm in size with a spherical morphology and negative surface charge. The CDs showed a high quantum yield of 19.9 %, reasonable photostability, excellent water solubility, and long fluorescence lifetime. A one step hydrothermal rout led to various hydrophilic functional groups on the surface of the CDs. Our results showed that the CDs were non-toxic over a large concentration range and effective for imaging of cells, indicating their potential as imaging probes in medical diagnostics and biosensor applications.

19.
Assay Drug Dev Technol ; 17(3): 140-149, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30958703

RESUMO

Drug resistance remains a major clinical problem despite advances in targeted therapies. In recent years, methods to culture cancer cells in three-dimensional (3D) environments to better mimic native tumors have gained increasing popularity. Nevertheless, unlike traditional two-dimensional (2D) cell cultures, analysis of 3D cultures is not straightforward. Most biochemical assays developed for 2D cultures have to be optimized for use with 3D cultures. We addressed this important problem by presenting a simple method of quantitative size-based analysis of growth and drug responses of 3D cultures of cancer cells as tumor spheroids. We used an aqueous two-phase system to form consistently sized tumor spheroids of colorectal cancer cells. Using spheroid images, we computed the size of spheroids over time and demonstrated that growth of spheroids from this analysis strongly correlates with that using a PrestoBlue biochemical assay optimized for 3D cultures. Next, we cyclically treated the tumor spheroids with a MEK inhibitor, trametinib, for 6-day periods with a recovery phase in between. This inhibitor was selected because of mutation of colon cancer cells in the MEK/ERK pathway. We used size measurements to evaluate the efficacy of trametinib and predict development of resistance of colon cancer cells during the cyclical treatment and recovery regimen. This size-based analysis closely matched the biochemical analysis of drug responses of spheroids. We performed molecular analysis and showed that resistance to trametinib emerged due to feedback activation of the PI3K/AKT signaling pathway. Therefore, we combined trametinib with a PI3K/AKT inhibitor, dactolisib, and demonstrated that size-based analysis of spheroids reliably allowed quantifying the effect of the combination treatment to prevent drug resistance. This study established that size measurements of spheroids can be used as a straightforward method for quantitative studies of drug responses of tumor spheroids and identifying drug combinations that block resistance.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/química , Neoplasias Colorretais/tratamento farmacológico , Imidazóis/farmacologia , Piridonas/farmacologia , Pirimidinonas/farmacologia , Quinolinas/farmacologia , Esferoides Celulares/química , Esferoides Celulares/efeitos dos fármacos , Neoplasias Colorretais/patologia , Combinação de Medicamentos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células HCT116 , Células HT29 , Humanos , Tamanho da Partícula , Esferoides Celulares/patologia , Células Tumorais Cultivadas
20.
Ann Biomed Eng ; 47(6): 1435-1445, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30859435

RESUMO

Surfactant instillation into the lungs is used to treat several respiratory disorders such as neonatal respiratory distress syndrome (NRDS). The success of the treatments significantly depends on the uniformity of distribution of the instilled surfactant in airways. This is challenging to directly evaluate due to the inaccessibility of lung airways and great difficulty with imaging them. To tackle this problem, we developed a 3D physical model of human lung airway tree. Using a defined set of principles, we first generated computational models of eight generations of neonates' tracheobronchial tree comprising the conducting zone airways. Similar to native lungs, these models contained continuously-branching airways that rotated in the 3D space and reduced in size with increase in the generation number. Then, we used additive manufacturing to generate physical airway tree models that precisely replicated the computational designs. We demonstrated the utility of the physical models to study surfactant delivery in the lungs and showed the effect of orientation of the airway tree in the gravitational field on the distribution of instilled surfactant between the left and right lungs and within each lung. Our 3D lung airway tree model offers a novel tool for quantitative studies of therapeutics delivery.


Assuntos
Modelos Anatômicos , Sistema Respiratório/metabolismo , Administração por Inalação , Humanos , Recém-Nascido , Tensoativos/administração & dosagem , Tensoativos/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...