Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(38): 21040-21052, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37721732

RESUMO

Iron-based enzymes efficiently activate molecular oxygen to perform the oxidation of methane to methanol (MTM), a reaction central to the contemporary chemical industry. Conversely, a very limited number of artificial catalysts have been devised to mimic this process. Herein, we employ the MIL-100(Fe) metal-organic framework (MOF), a material that exhibits isolated Fe sites, to accomplish the MTM conversion using O2 as the oxidant under mild conditions. We apply a diverse set of advanced operando X-ray techniques to unveil how MIL-100(Fe) can act as a catalyst for direct MTM conversion. Single-phase crystallinity and stability of the MOF under reaction conditions (200 or 100 °C, CH4 + O2) are confirmed by X-ray diffraction measurements. X-ray absorption, emission, and resonant inelastic scattering measurements show that thermal treatment above 200 °C generates Fe(II) sites that interact with O2 and CH4 to produce methanol. Experimental evidence-driven density functional theory (DFT) calculations illustrate that the MTM reaction involves the oxidation of the Fe(II) sites to Fe(III) via a high-spin Fe(IV)═O intermediate. Catalyst deactivation is proposed to be caused by the escape of CH3• radicals from the relatively large MOF pore cages, ultimately resulting in the formation of hydroxylated triiron units, as proven by valence-to-core X-ray emission spectroscopy. The O2-based MTM catalytic activity of MIL-100(Fe) in the investigated conditions is demonstrated for two consecutive reaction cycles, proving the MOF potential toward active site regeneration. These findings will desirably lay the groundwork for the design of improved MOF catalysts for the MTM conversion.

2.
Inorg Chem ; 62(28): 11188-11198, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37385975

RESUMO

Phosphorus K-edge X-ray absorption near-edge structure (XANES) spectroscopy is a technique routinely employed in the qualitative and quantitative analysis of phosphorus speciation in many scientific fields. The data analysis is, however, often performed in a qualitative manner, relying on linear combination fitting protocols or simple comparisons between the experimental data and the spectra of standards, and little quantitative structural and electronic information is thus retrieved. Herein, we report a thorough theoretical investigation of P K-edge XANES spectra of NaH2PO4·H2O, AlPO4, α-Ti(HPO4)2·H2O, and FePO4·2H2O showing excellent agreement with the experimental data. We find that different coordination shells of phosphorus, up to a distance of 5-6 Å from the photoabsorber, contribute to distinct features in the XANES spectra. This high structural sensitivity enables P K-edge XANES spectroscopy to even distinguish between nearly isostructural crystal phases of the same compound. Additionally, we provide a rationalization of the pre-edge transitions observed in the spectra of α-Ti(HPO4)2·H2O and FePO4·2H2O through density of states calculations. These pre-edge transitions are found to be enabled by the covalent mixing of phosphorus s and p orbitals and titanium or iron d orbitals, which happens even though neither metal ion is directly bound to phosphorus in the two systems.

3.
ACS Appl Mater Interfaces ; 15(21): 26166-26174, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37199730

RESUMO

Magnesium chloride is a prototypical deliquescent material whose surface properties, although central for Ziegler-Natta cataysis, have so far remained elusive to experimental characterization. In this work, we use surface-selective X-ray absorption spectroscopy (XAS) at ambient pressure in combination with multivariate curve resolution, molecular dynamics, and XAS theoretical methods to track in real time and accurately describe the interaction between water vapor and the MgCl2 surface. By exposing MgCl2 to water vapor at temperatures between 595 and 391 K, we show that water is preferentially adsorbed on five-coordinated Mg2+ sites in an octahedral configuration, confirming previous theoretical predictions, and find that MgCl2 is capable of retaining a significant amount of adsorbed water even under prolonged heating to 595 K. As a consequence, our work provides first experimental insights into the unique surface affinity of MgCl2 for atmospheric water. The developed technique is proven highly sensitive to the modifications induced by adsorbates on a given low-Z metal based surface and may be useful in the toolbox required to disentangle the mechanisms of interfacial chemical processes.

4.
ACS Appl Mater Interfaces ; 14(33): 38370-38378, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35968677

RESUMO

Interfaces between water and materials are ubiquitous and are crucial in materials sciences and in biology, where investigating the interaction of water with the surface under ambient conditions is key to shedding light on the main processes occurring at the interface. Magnesium oxide is a popular model system to study the metal oxide-water interface, where, for sufficient water loadings, theoretical models have suggested that reconstructed surfaces involving hydrated Mg2+ metal ions may be energetically favored. In this work, by combining experimental and theoretical surface-selective ambient pressure X-ray absorption spectroscopy with multivariate curve resolution and molecular dynamics, we evidence in real time the occurrence of Mg2+ solvation at the interphase between MgO and solvating media such as water and methanol (MeOH). Further, we show that the Mg2+ surface ions undergo a reversible solvation process, we prove the dissolution/redeposition of the Mg2+ ions belonging to the MgO surface, and we demonstrate the formation of octahedral [Mg(H2O)6]2+ and [Mg(MeOH)6]2+ intermediate solvated species. The unique surface, electronic, and structural sensitivity of the developed technique may be beneficial to access often elusive properties of low-Z metal ion intermediates involved in interfacial processes of chemical and biological interest.

5.
Phys Chem Chem Phys ; 24(30): 18094-18102, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35880669

RESUMO

X-ray absorption spectroscopy (XAS) has been employed to carry out structural characterization of the local environment around mercury after the dissolution of the HgCl2 molecule. A combined EXAFS (extended X-ray absorption fine structure) and XANES (X-ray absorption near edge structure) data analysis has been performed on the Hg L3-edge absorption spectra recorded on 0.1 M HgCl2 solutions in water, methanol (MeOH), acetone and acetonitrile. The Hg-Cl distance determined by EXAFS (2.29(2)-2.31(2) Å) is always comparable to that found in the HgCl2 crystal (2.31(2) Å), demonstrating that the HgCl2 molecule dissolves in these solvents without dissociating. A small sensitivity of EXAFS to the solvent molecules interacting with HgCl2 has been detected and indicates a high degree of configurational disorder associated with this contribution. XANES data analysis, which is less affected by the disorder, was therefore carried out for the first time on these systems to shed light into the still elusive structural arrangement of the solvent molecules around HgCl2. The obtained results show that, in aqueous and MeOH solutions, the XANES data are compatible with three solvent molecules arranged around the HgCl2 unit to form a trigonal bipyramidal structure. The determination of the three-body Cl-Hg-Cl distribution shows a certain degree of uncertainty around the average 180° bond angle value, suggesting that the HgCl2 molecule probably vibrates in the solution around a linear configuration.

6.
J Phys Chem Lett ; 13(24): 5522-5529, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35695810

RESUMO

The dissipative translocation of the Zn2+ ion between two prototypical coordination complexes has been investigated by combining X-ray absorption and 1H NMR spectroscopy. An integrated experimental and theoretical approach, based on state-of-the-art Multivariate Curve Resolution and DFT based theoretical analyses, is presented as a means to understand the concentration time evolution of all relevant Zn and organic species in the investigated processes, and accurately characterize the solution structures of the key metal coordination complexes. Specifically, we investigate the dissipative translocation of the Zn2+ cation from hexaaza-18-crown-6 to two terpyridine moieties and back again to hexaaza-18-crown-6 using 2-cyano-2-phenylpropanoic acid and its para-chloro derivative as fuels. Our interdisciplinary approach has been proven to be a valuable tool to shed light on reactive systems containing metal ions that are silent to other spectroscopic methods. These combined experimental approaches will enable future applications to chemical and biological systems in a predictive manner.


Assuntos
Complexos de Coordenação , Cátions , Complexos de Coordenação/química , Cristalografia por Raios X , Ligantes , Espectroscopia de Ressonância Magnética , Metais , Raios X , Zinco/química
7.
Inorg Chem ; 61(23): 8843-8853, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35616906

RESUMO

The metal-based deep eutectic solvent (MDES) formed by NiCl2·6H2O and urea in 1:3.5 molar ratio has been prepared for the first time and characterized from a structural point of view. Particular accent has been put on the role of water in the MDES formation, since the eutectic could not be obtained with the anhydrous form of the metal salt. To this end, mixtures at different water/MDES molar ratios (W) have been studied with a combined approach exploiting molecular dynamics and ab initio simulations, UV-vis and near-infra-red spectroscopies, small- and wide-angle X-ray scattering, and X-ray absorption spectroscopy measurements. In the pure MDES, a close packing of Ni2+ ion clusters forming oligomeric agglomerates is present thanks to the mediation of bridging chloride anions and water molecules. Conversely, urea poorly coordinates the metal ion and is mostly found in the interstitial regions among the Ni2+ ion oligomers. This nanostructure is disrupted upon the introduction of additional water, which enlarges the Ni-Ni distances and dilutes the system up to an aqueous solution of the MDES constituents. In the NiCl2·6H2O 1:3.5 MDES, the Ni2+ ion is coordinated on average by one chloride anion and five water molecules, while water easily saturates the metal solvation sphere to provide a hexa-aquo coordination for increasing W values. This multidisciplinary study allowed us to reconstruct the structural arrangement of the MDES and its aqueous mixtures on both short- and intermediate-scale levels, clarifying the fundamental role of water in the eutectic formation and challenging the definition at the base of these complex systems.

8.
Chemistry ; 28(4): e202103825, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34850474

RESUMO

The satisfactory rationalization of complex reactive pathways in solution chemistry may greatly benefit from the combined use of advanced experimental and theoretical complementary methods of analysis. In this work, we combine X-Ray Absorption and 1 H NMR spectroscopies with state-of-the-art Multivariate Curve Resolution and theoretical analyses to gain a comprehensive view on a prototypical reaction involving the variation of the oxidation state and local structure environment of a selected metal ion coordinated by organic ligands. Specifically, we investigate the 2-cyano-2-phenylpropanoic acid reduction of the octahedral complex established by the Cu2+ ion with terpyridine to the tetrahedral complex formed by Cu+ and neocuproine. Through our interdisciplinary approach we gain insights into the nature, concentration time evolution and structures of the key metal (XAS measurements) and organic (1 H NMR measurements) species under reaction. We believe our method may prove to be useful in the toolbox necessary to understand the mechanisms of reactive processes of interest in solution.

9.
Phys Chem Chem Phys ; 23(46): 26575-26584, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34812450

RESUMO

High entropy oxides (HEOs) are an emerging class of materials constituted by multicomponent systems that are receiving special interest as candidates for obtaining novel and desirable properties. In this study we present a detailed investigation of the relevant intermediates arising at the surface of the prototypical HEO Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O during low-temperature CO oxidation. By combining Cu L2,3-edge operando soft X-ray absorption spectroscopy (soft-XAS) with density functional theory simulations and in situ FT-IR spectroscopy, we propose that upon HEO exposure to CO at 235 °C reduced Cu(I) sites arise mostly coordinated to activated CO molecules and partly to bidentate carbonate species. When the HEO surface is then exposed to a stoichiometric mixture of CO + 1/2O2 at 250 °C, CO2 is produced while bidentate carbonate moieties remain interacting with the Cu(I) sites. We structurally characterize the carbonate and CO preferential adsorption geometries on the Cu(I) surface metal centers, and find that CO adopts a bent conformation that may energetically favor its subsequent oxidation. The unique surface, structural and electronic sensitivity of soft-XAS coupled with the developed data analysis work-flow and supported by FT-IR spectroscopy may be beneficial to characterize often elusive surface properties of systems of catalytic interest.

10.
J Phys Chem Lett ; 12(37): 9182-9187, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34528795

RESUMO

In this work, we apply for the first time ambient pressure operando soft X-ray absorption spectroscopy (XAS) to investigate the location, structural properties, and reactivity of the defective sites present in the prototypical metal-organic framework HKUST-1. We obtained direct evidence that Cu+ defective sites form upon temperature treatment of the powdered form of HKUST-1 at 160 °C and that they are largely distributed on the material surface. Further, a thorough structural characterization of the Cu+/Cu2+ dimeric complexes arising from the temperature-induced dehydration/decarboxylation of the pristine Cu2+/Cu2+ paddlewheel units is reported. In addition to characterizing the surface defects, we demonstrate that CO2 may be reversibly adsorbed and desorbed from the surface defective Cu+/Cu2+ sites. These findings show that ambient pressure soft-XAS, combined with state-of-the-art theoretical calculations, allowed us to shed light on the mechanism involving the decarboxylation of the paddlewheel units on the surface to yield Cu+/Cu2+ complexes and their reversible restoration upon exposure to gaseous CO2.

11.
Phys Chem Chem Phys ; 23(2): 1188-1196, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33355324

RESUMO

The understanding of reactive processes involving organic substrates is crucial to chemical knowledge and requires multidisciplinary efforts for its advancement. Herein, we apply a combined multivariate, statistical and theoretical analysis of coupled time-resolved X-ray absorption (XAS)/UV-Vis data to obtain detailed mechanistic information for on the C-H bond activation of 9,10-dihydroanthracene (DHA) and diphenylmethane (Ph2CH2) by the nonheme FeIV-oxo complex [N4Py·FeIV(O)]2+ (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) in CH3CN at room temperature. Within this approach, we determine the number of key chemical species present in the reaction mixtures and derive spectral and concentration profiles for the reaction intermediates. From the quantitative analysis of the XAS spectra the transient intermediate species are structurally determined. As a result, it is suggested that, while DHA is oxidized by [N4Py·FeIV(O)]2+ with a hydrogen atom transfer-electron transfer (HAT-ET) mechanism, Ph2CH2 is oxidized by the nonheme iron-oxo complex through a HAT-radical dissociation pathway. In the latter process, we prove that the intermediate FeIII complex [N4Py·FeIII(OH)]2+ is not able to oxidize the diphenylmethyl radical and we provide its structural characterization in solution. The employed combined experimental and theoretical strategy is promising for the spectroscopic characterization of transient intermediates as well as for the mechanistic investigation of redox chemical transformations on the second to millisecond time scales.

12.
Dalton Trans ; 50(1): 131-142, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33284934

RESUMO

In this work, we obtain detailed mechanistic and structural information on bimolecular chemical reactions occurring in solution on the second to millisecond time scales through the combination of a statistical, multivariate and theoretical analysis of time-resolved coupled X-ray Absorption Spectroscopy (XAS) and UV-Vis data. We apply this innovative method to investigate the sulfoxidation of p-cyanothioanisole and p-methoxythioanisole by the nonheme FeIV oxo complex [N4Py·FeIV(O)]2+ (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) in acetonitrile at room temperature. By employing statistical and multivariate techniques we determine the number of key chemical species involved along the reaction paths and derive spectral and concentration profiles for the reaction intermediates. From the quantitative analysis of the XAS spectra we obtain accurate structural information for all reaction intermediates and provide the first structural characterization in solution of complex [N4Py·FeIII(OH)]2+. The employed strategy is promising for the spectroscopic characterization of transient species formed in redox reactions.


Assuntos
Anisóis/química , Ferro/química , Metilaminas/química , Estrutura Molecular , Oxirredução , Soluções , Espectrofotometria Ultravioleta , Espectroscopia por Absorção de Raios X
13.
Inorg Chem ; 59(14): 9979-9989, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32598841

RESUMO

In this work, we propose a method to directly determine the mechanism of the reaction between the nonheme complex FeII(tris(2-pyridylmethyl)amine) ([FeII(TPA)(CH3CN)2]2+) and peracetic acid (AcOOH) in CH3CN, working at room temperature. A multivariate analysis is applied to the time-resolved coupled energy-dispersive X-ray absorption spectroscopy (EDXAS) reaction data, from which a set of spectral and concentration profiles for the reaction key species is derived. These "pure" extracted EDXAS spectra are then quantitatively characterized by full multiple scattering (MS) calculations. As a result, structural information for the elusive reaction intermediates [FeIII(TPA)(κ2-OOAc)]2+ and [FeIV(TPA)(O)(X)]+/2+ is obtained, and it is suggested that X = AcO- in opposition to X = CH3CN. The employed strategy is promising both for the spectroscopic characterization of reaction intermediates that are labile or silent to the conventional spectroscopic techniques, as well as for the mechanistic understanding of complex redox reactions involving organic substrates.

14.
J Am Chem Soc ; 141(6): 2299-2304, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30648388

RESUMO

Time-resolved X-ray absorption (XAS) and UV-vis spectroscopies with millisecond resolution are used simultaneously to investigate oxidation reactions of organic substrates by nonheme iron activated species. In particular, the oxidation processes of arylsulfides and benzyl alcohols by a nonheme iron-oxo complex have been studied. We show for the first time that the pseudo-first-order rate constants of fast bimolecular processes in solution (milliseconds and above) can be determined by time-resolved XAS technique. By following the Fe K-edge energy shift, it is possible to detect the rate of iron oxidation state evolution that matches that of the bimolecular reaction in solution. The kinetic constant values obtained by XAS are in perfect agreement with those obtained by means of the concomitant UV-vis detection. This combined approach has the potential to provide unique insights into reaction mechanisms in the liquid phase that involve changes of the oxidation state of a metal center, and it is particularly useful in complex chemical systems where possible interferences from species present in solution could make it impossible to use other detection techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...