Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 224(4)2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37259670

RESUMO

Gamete formation is essential for sexual reproduction in metazoans. Meiosis in males gives rise to spermatids that must differentiate and individualize into mature sperm. In Drosophila melanogaster, individualization of interconnected spermatids requires the formation of individualization complexes that synchronously move along the sperm bundles. Here, we show that Mob4, a member of the Mps-one binder family, is essential for male fertility but has no detectable role in female fertility. We show that Mob4 is required for proper axonemal structure and its loss leads to male sterility associated with defective spermatid individualization and absence of mature sperm in the seminal vesicles. Transmission electron micrographs of developing spermatids following mob4RNAi revealed expansion of the outer axonemal microtubules such that the 9 doublets no longer remained linked to each other and defective mitochondrial organization. Mob4 is a STRIPAK component, and male fertility is similarly impaired upon depletion of the STRIPAK components, Strip and Cka. Expression of the human Mob4 gene rescues all phenotypes of Drosophila mob4 downregulation, indicating that the gene is evolutionarily and functionally conserved. Together, this suggests that Mob4 contributes to the regulation of the microtubule- and actin-cytoskeleton during spermatogenesis through the conserved STRIPAK complex. Our study advances the understanding of male infertility by uncovering the requirement for Mob4 in sperm individualization.


Assuntos
Proteínas de Drosophila , Infertilidade Masculina , Animais , Feminino , Humanos , Masculino , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Infertilidade Masculina/genética , Proteínas do Tecido Nervoso/metabolismo , Sêmen/metabolismo , Espermátides/metabolismo , Espermatogênese/genética , Testículo/metabolismo
2.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-36915897

RESUMO

Mob4 is an essential evolutionary conserved protein shown to play roles in cell division and neural development. Mob4 is a core component of the macromolecular STRIPAK complex involved in various critical cellular processes, from cell division to signal transduction pathways. However, Mob4 remains relatively poorly understood. Although the consequences of eliminating Mob4 function in Drosophila are described, its function in vertebrate development remains largely unknown. Here we show that knockdown and knockout of Mob4 during zebrafish embryogenesis limits neuronal cell divisions but has little effect on apoptosis, thus arguing a role for mob4 in neurodevelopment.

3.
Oral Dis ; 25(5): 1291-1301, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30866167

RESUMO

OBJECTIVES: Bub3 and Spindly are essential proteins required for the activation and inactivation of the spindle assembly checkpoint, respectively. Here, we explored the clinicopathological significance and the therapeutic potential of the opposing roles of the two proteins in oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS: Bub3 and Spindly expression was evaluated by immunohistochemistry in 62 tissue microarrays from OSCC and by real-time PCR in OSCC cell lines and in normal human oral keratinocytes. The results were analyzed as to their clinicopathological significance. RNA interference-mediated Spindly or Bub3 inhibition was combined with cisplatin treatment, and the effect on the viability of OSCC cells was assessed. RESULTS: Overexpression of Bub3 and Spindly was detected in OSCC patients. High expression of Spindly, Bub3, or both was an independent prognostic indicator for cancer-specific survival and was associated with increased cellular proliferation. Accordingly, Bub3 and Spindly were upregulated in OSCC cells comparatively to their normal counterpart. Inhibition of Bub3 or Spindly was cytotoxic to OSCC cells and enhanced their chemosensitivity to cisplatin. CONCLUSIONS: The data point out Bub3 and Spindly as potential markers of proliferation and prognosis, and highlight the potential therapeutic benefit of combining their inhibition with cisplatin.


Assuntos
Carcinoma de Células Escamosas/genética , Proteínas de Ciclo Celular/genética , Neoplasias Bucais/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Antineoplásicos , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino , Humanos , Prognóstico
4.
FEBS Lett ; 589(23): 3588-94, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26526612

RESUMO

We previously reported that the spindle assembly checkpoint protein Bub3 is involved in regulating kinetochore-microtubule (KT-MT) attachments. Also, Bub3 was reported to interact with the microtubule motor protein dynein. Here we examined how this interaction contributes to KT-MT attachments. Depletion of Bub3 or dynein induced misaligned chromosomes, consistent with their role in KT-MT attachments. Unexpectedly, co-silencing of both proteins partially suppressed the misalignment phenotype and restored chromosome congression. Consistent with these observations, KT-MT attachments in co-depleted cells were stable, able to drive chromosome congression, and produce inter- and intra-kinetochore stretch, indicating they are functional. We suggest that a mutual antagonism exists between Bub3 and dynein to ensure optimal KT-MT attachments.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Dineínas/antagonistas & inibidores , Dineínas/genética , Inativação Gênica , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/metabolismo , Aberrações Cromossômicas , Dineínas/deficiência , Dineínas/metabolismo , Células HeLa , Humanos , Fenótipo , Proteínas de Ligação a Poli-ADP-Ribose
5.
FEBS Lett ; 588(17): 3265-73, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25064841

RESUMO

A predominant mechanism of spindle assembly checkpoint (SAC) silencing is dynein-mediated transport of certain kinetochore proteins along microtubules. There are still conflicting data as to which SAC proteins are dynein cargoes. Using two ATP reduction assays, we found that the core SAC proteins Mad1, Mad2, Bub1, BubR1, and Bub3 redistributed from attached kinetochores to spindle poles, in a dynein-dependent manner. This redistribution still occurred in metaphase-arrested cells, at a time when the SAC should be satisfied and silenced. Unexpectedly, we found that a pool of Hec1 and Mis12 also relocalizes to spindle poles, suggesting KMN components as additional dynein cargoes. The potential significance of these results for SAC silencing is discussed.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dineínas/metabolismo , Cinetocoros/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Polos do Fuso/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/genética , Inativação Gênica , Células HeLa , Humanos , Transporte Proteico
6.
J Cell Sci ; 125(Pt 13): 3085-90, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22454515

RESUMO

The completion of cytokinesis requires abscission of the midbody, a microtubule-rich cytoplasmic bridge that connects the daughter cells before their final separation. Although it has been established that both the midbody structure and membrane fusion are essential for abscission, the biochemical machinery and the cellular processes of abscission remain ill-defined. Here we report that human Mob1A and Mob1B proteins are involved in the regulation of abscission of the intercellular bridge. The Mob family is a group of highly conserved proteins in eukaryotes, described as binding partners as well as co-activators of protein kinases of the Ndr family, and as members of the Hippo pathway. We show that depletion of Mob1A and Mob1B by RNAi causes abscission failure as a consequence of hyper-stabilization of microtubules in the midbody region. Interestingly, depleting Mob1 also increases cell motility after cytokinesis, and induces prolonged centriole separation in G1 phase. In contrast, centrosomes fail to split when either Mob1A or Mob1B is overexpressed. Our findings indicate that human Mob1 proteins are involved in the regulation of microtubule stability at the midbody. We conclude that Mob1A and Mob1B are needed for cell abscission and centriole re-joining after telophase and cytokinesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Citocinese , Microtúbulos/fisiologia , Acetilação , Proteínas Adaptadoras de Transdução de Sinal/genética , Movimento Celular , Polaridade Celular , Centrossomo/metabolismo , Centrossomo/fisiologia , Células HeLa , Humanos , Microscopia de Fluorescência , Microtúbulos/metabolismo , Estabilidade Proteica , Transporte Proteico , RNA Interferente Pequeno/genética , Telófase , Transfecção
7.
J Cell Sci ; 125(Pt 2): 516-27, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22331360

RESUMO

Mob1 is a component of both the mitotic exit network and Hippo pathway, being required for cytokinesis, control of cell proliferation and apoptosis. Cell division accuracy is crucial in maintaining cell ploidy and genomic stability and relies on the correct establishment of the cell division axis, which is under the control of the cell's environment and its intrinsic polarity. The ciliate Tetrahymena thermophila possesses a permanent anterior-posterior axis, left-right asymmetry and divides symmetrically. These unique features of Tetrahymena prompted us to investigate the role of Tetrahymena Mob1. Unexpectedly, we found that Mob1 accumulated in basal bodies at the posterior pole of the cell, and is the first molecular polarity marker so far described in Tetrahymena. In addition, Mob1 depletion caused the abnormal establishment of the cell division plane, providing clear evidence that Mob1 is important for its definition. Furthermore, cytokinesis was arrested and ciliogenesis delayed in Tetrahymena cells depleted of Mob1. This is the first evidence for an involvement of Mob1 in cilia biology. In conclusion, we show that Mob1 is an important cell polarity marker that is crucial for correct division plane placement, for cytokinesis completion and for normal cilia growth rates.


Assuntos
Divisão Celular , Polaridade Celular , Proteínas de Protozoários/fisiologia , Cílios/ultraestrutura , Citocinese , Regulação para Baixo , Proteínas de Protozoários/análise , Proteínas de Protozoários/metabolismo , Tetrahymena thermophila/metabolismo , Tetrahymena thermophila/ultraestrutura
8.
Cell Cycle ; 7(16): 2529-34, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18719370

RESUMO

Correct chromosome structure is essential to ensure faithful segregation during mitosis. Chromosome condensation occurs at the same time as cohesion is released from the arms of the sister chromatids. It is not until metaphase-anaphase transition that chromosomes lose cohesion completely, by proteolysis of the component of the cohesin complex Scc1 (Sister chromatid cohesion 1). It has been shown in vertebrates that the Polo-like kinase, Plk1, is important for this process by inducing the destabilization of Scc1 from the chromosome arms. It is still unclear if this process is conserved in other high eukaryotes, namely in Drosophila. Here we analysed the consequences over chromosome resolution of the downregulation of Drosophila Polo, both by mutant analysis and by RNAi-depletion in S2 cells. We show that the depletion of Polo results in a strong prometa/metaphase arrest with the spindle checkpoint activated in response to lack of tension. In addition, the checkpoint protein ROD fails to stream over the kinetochore microtubules in the lack of Polo activity. We also show that loss of Polo causes strong defects in chromosome resolution, a phenotype we partially rescued by depleting Scc1. Importantly, we show Scc1 fails to accumulate on the kinetochores during mitosis and remains on the chromosome arms in the absence of Polo. We therefore propose an alternative role for Drosophila Polo in Scc1 redistribution during mitosis.


Assuntos
Segregação de Cromossomos/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Mitose/genética , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Cromátides/metabolismo , Regulação para Baixo , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimologia , Drosophila melanogaster/fisiologia , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA
9.
Exp Cell Res ; 312(3): 308-21, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16337190

RESUMO

Polo-like kinases (Plks) are essential for progression through mitosis. The activity of these kinases peak during M phase and this activation has been attributed to phosphorylation. Kinases capable of activating Plks in vitro have been previously identified both in mammalian cells and in Xenopus laevis oocytes (SLK and xPlkk1, respectively), although an in vivo correlation has not been clearly established. In order to study the regulation of Polo activity, we identified and cloned a Drosophila melanogaster kinase belonging to the ste20 ser/thr family that presents a close sequence homology with xPlkk1 and SLK. We termed this kinase dPlkk and showed that dPlkk associates with and phosphorylates Polo in vitro, resulting in the activation of the latter. On the other hand, when dPlkk is depleted from S2 cells, Polo activation does not seem to be impaired, suggesting that other kinases are involved in regulating Polo activity in vivo. Additionally, we found that a percentage of dPlkk-depleted cells fail to form a proper actin ring at the end of mitosis, leading to a failure in the assembly of the cleavage furrow and to the formation of binucleated cells. The detected accumulation of dPlkk in the contractile ring late in anaphase reinforces the idea that this kinase plays a role in cytokinesis.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Citoesqueleto/fisiologia , Drosophila melanogaster , Ativação Enzimática , Técnica Indireta de Fluorescência para Anticorpo , Histonas/metabolismo , Técnicas In Vitro , Dados de Sequência Molecular , Proteína Básica da Mielina/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas de Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...