Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Biotechnol ; 228: 58-66, 2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-27130499

RESUMO

Bacillus subtilis spores represent a suitable platform for the adsorption of proteins, enzymes and viral particles at physiological conditions. In the present work, we demonstrate that purified spores can also adsorb DNA on their surface after treatment with cationic molecules. In addition, we demonstrate that DNA-coated B. subtilis spores can be used as particulate carriers and act as an alternative to gold microparticles for the biolistic (gene gun) administration of plasmid DNA in mice. Gene gun delivery of spores pre-treated with DODAB (dioctadecyldimethylammonium bromide) allowed efficient plasmid DNA absorption and induced protein expression levels similar to those obtained with gold microparticles. More importantly, we demonstrated that a DNA vaccine adsorbed on spores can be loaded into biolistic cartridges and efficiently delivered into mice, which induced specific cellular and antibody responses. Altogether, these data indicate that B. subtilis spores represent a simple and low cost alternative for the in vivo delivery of DNA vaccines by the gene gun technology.


Assuntos
Biolística/métodos , Portadores de Fármacos/química , Esporos Bacterianos/química , Vacinas de DNA/química , Adsorção , Animais , Bacillus subtilis/química , Portadores de Fármacos/administração & dosagem , Ouro/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/imunologia , Compostos de Amônio Quaternário/química , Esporos Bacterianos/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/imunologia
2.
Curr Microbiol ; 66(3): 279-85, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23183956

RESUMO

Bacillus subtilis endospores have applications in different fields including their use as probiotics and antigen delivery vectors. Such specialized applications frequently require highly purified spore preparations. Nonetheless, quantitative data regarding both yields and purity of B. subtilis endospores after application of different growth conditions and purification methods are scarce or poorly reported. In the present study, we conducted several quantitative and qualitative analyses of growth conditions and purification procedures aiming generation of purified B. subtilis spores. Based on two growth media and different incubations conditions, sporulation frequencies up to 74.2 % and spore concentrations up to 7 × 10(9) spores/ml were achieved. Application of a simplified spore isolation method, in which samples were incubated with lysozyme and a detergent, resulted in preparations with highly purified spores at the highest yields. The present study represents, therefore, an important contribution for those working with B. subtilis endospores for different biotechnological purposes.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/fisiologia , Bacillus subtilis/citologia , Meios de Cultura , Esporos Bacterianos/citologia , Esporos Bacterianos/isolamento & purificação , Fatores de Tempo
3.
FEMS Immunol Med Microbiol ; 59(2): 131-42, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20402772

RESUMO

The oral pathogen Streptococcus mutans expresses a surface protein, P1, which interacts with the salivary pellicle on the tooth surface or with fluid-phase saliva, resulting in bacterial adhesion or aggregation, respectively. P1 is a target of protective immunity. Its N-terminal region has been associated with adhesion and aggregation functions and contains epitopes recognized by efficacious antibodies. In this study, we used Bacillus subtilis, a gram-positive expression host, to produce a recombinant N-terminal polypeptide of P1 (P1(39-512)) derived from the S. mutans strain UA159. Purified P1(39-512) reacted with an anti-full-length P1 antiserum as well as one raised against intact S. mutans cells, indicating preserved antigenicity. Immunization of mice with soluble and heat-denatured P1(39-512) induced antibodies that reacted specifically with native P1 on the surface of S. mutans cells. The anti-P1(39-512) antiserum was as effective at blocking saliva-mediated aggregation of S. mutans cells and better at blocking bacterial adhesion to saliva-coated plastic surfaces compared with the anti-full-length P1 antiserum. In addition, adsorption of the anti-P1 antiserum with P1(39-512) eliminated its ability to block the adhesion of S. mutans cells to abiotic surfaces. The present results indicate that P1(39-512), expressed and purified from a recombinant B. subtilis strain, maintains important immunological features of the native protein and represents an additional tool for the development of anticaries vaccines.


Assuntos
Adesinas Bacterianas/imunologia , Anticorpos Antibacterianos/sangue , Anticorpos Neutralizantes/sangue , Bacillus subtilis/genética , Streptococcus mutans/imunologia , Adesinas Bacterianas/genética , Animais , Aderência Bacteriana/imunologia , Vetores Genéticos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Streptococcus mutans/genética
4.
Genet Mol Biol ; 33(2): 341-7, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21637492

RESUMO

In this study we investigated the prevalence of the oppA gene, encoding the oligopeptide binding protein (OppA) of the major bacterial oligopeptide uptake system (Opp), in different species of the genus Xanthomonas. The oppA gene was detected in two Xanthomonas axonopodis strains among eight tested Xanthomonas species. The generation of an isogenic oppA-knockout derivative of the Xac 306 strain, showed that the OppA protein neither plays a relevant role in oligopeptide uptake nor contributes to the infectivity and multiplication of the bacterial strain in leaves of sweet orange (Citrus sinensis) and Rangpur lime (Citrus limonia). Taken together these results suggest that the oppA gene has a recent evolutionary history in the genus and does not contribute in the physiology or pathogenesis of X. axonopodis.

5.
Genet. mol. biol ; 33(2): 341-347, 2010. ilus, graf, tab
Artigo em Inglês | LILACS-Express | LILACS, Sec. Est. Saúde SP | ID: lil-548826

RESUMO

In this study we investigated the prevalence of the oppA gene, encoding the oligopeptide binding protein (OppA) of the major bacterial oligopeptide uptake system (Opp), in different species of the genus Xanthomonas. The oppA gene was detected in two Xanthomonas axonopodis strains among eight tested Xanthomonas species. The generation of an isogenic oppA-knockout derivative of the Xac 306 strain, showed that the OppA protein neither plays a relevant role in oligopeptide uptake nor contributes to the infectivity and multiplication of the bacterial strain in leaves of sweet orange (Citrus sinensis) and Rangpur lime (Citrus limonia). Taken together these results suggest that the oppA gene has a recent evolutionary history in the genus and does not contribute in the physiology or pathogenesis of X. axonopodis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...