Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Biol Anthropol ; 183(1): 157-164, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37724468

RESUMO

OBJECTIVES: Studying rib torsion is crucial for understanding the evolution of the hominid ribcage. Interestingly, there are variables of the rib cross section that could be associated with rib torsion and, consequently, with the morphology of the thorax. The aim of this research is to conduct a comparative study of the shape and mineralized tissues of the rib cross section in different hominids to test for significant differences and, if possible, associate them to different thoracic morphotypes. MATERIALS AND METHODS: The sample consists of the rib cross sections at the midshaft taken from 10 Homo sapiens and 10 Pan troglodytes adult individuals, as well as from A. africanus Sts 14. The shape of these rib cross sections was quantified using geometric morphometrics, while the mineralized tissues were evaluated using the compartmentalization index. Subsequently, covariation between both parameters was tested by a Spearman's ρ test, a permutation test and a linear regression. RESULTS: Generally, P. troglodytes individuals exhibit rib cross sections that are rounder and more mineralized compared to those of H. sapiens. However, the covariation between both parameters was only observed in typical ribs (levels 3-10). Although covariation was not found in the rib cross sections of Sts 14, their parameters are closer to P. troglodytes. DISCUSSION: On the one hand, the differences observed in the rib cross sections between H. sapiens and P. troglodytes might be related to different degrees of rib torsion and, consequently, to different thoracic 3D configurations. These findings can be functionally explained by considering their distinct modes of breathing and locomotion. On the other hand, although the rib cross sections belonging to Sts 14 are more similar to those of P. troglodytes, previous publications determined that their overall morphology is closer to modern humans. This discrepancy could reflect a diversity of post-cranial adaptations in Australopithecus.


Assuntos
Hominidae , Pan troglodytes , Adulto , Animais , Humanos , Pan troglodytes/anatomia & histologia , Hominidae/anatomia & histologia , Tórax/anatomia & histologia , Costelas/anatomia & histologia , Crânio
2.
Commun Biol ; 6(1): 636, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311857

RESUMO

Fossil endocasts record features of brains from the past: size, shape, vasculature, and gyrification. These data, alongside experimental and comparative evidence, are needed to resolve questions about brain energetics, cognitive specializations, and developmental plasticity. Through the application of interdisciplinary techniques to the fossil record, paleoneurology has been leading major innovations. Neuroimaging is shedding light on fossil brain organization and behaviors. Inferences about the development and physiology of the brains of extinct species can be experimentally investigated through brain organoids and transgenic models based on ancient DNA. Phylogenetic comparative methods integrate data across species and associate genotypes to phenotypes, and brains to behaviors. Meanwhile, fossil and archeological discoveries continuously contribute new knowledge. Through cooperation, the scientific community can accelerate knowledge acquisition. Sharing digitized museum collections improves the availability of rare fossils and artifacts. Comparative neuroanatomical data are available through online databases, along with tools for their measurement and analysis. In the context of these advances, the paleoneurological record provides ample opportunity for future research. Biomedical and ecological sciences can benefit from paleoneurology's approach to understanding the mind as well as its novel research pipelines that establish connections between neuroanatomy, genes and behavior.


Assuntos
Encéfalo , Fósseis , Filogenia , Arqueologia , Artefatos
3.
Sci Adv ; 8(42): eabp9767, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36269821

RESUMO

The frontal sinuses are cavities inside the frontal bone located at the junction between the face and the cranial vault and close to the brain. Despite a long history of study, understanding of their origin and variation through evolution is limited. This work compares most hominin species' holotypes and other key individuals with extant hominids. It provides a unique and valuable perspective of the variation in sinuses position, shape, and dimensions based on a simple and reproducible methodology. We also observed a covariation between the size and shape of the sinuses and the underlying frontal lobes in hominin species from at least the appearance of Homo erectus. Our results additionally undermine hypotheses stating that hominin frontal sinuses were directly affected by biomechanical constraints resulting from either chewing or adaptation to climate. Last, we demonstrate their substantial potential for discussions of the evolutionary relationships between hominin species.


Assuntos
Fósseis , Hominidae , Animais , Humanos , Crânio/anatomia & histologia , Encéfalo , Clima
4.
Proc Natl Acad Sci U S A ; 119(28): e2111212119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35787044

RESUMO

The origins of Homo, as well as the diversity and biogeographic distribution of early Homo species, remain critical outstanding issues in paleoanthropology. Debates about the recognition of early Homo, first appearance dates, and taxonomic diversity within Homo are particularly important for determining the role that southern African taxa may have played in the origins of the genus. The correct identification of Homo remains also has implications for reconstructing phylogenetic relationships between species of Australopithecus and Paranthropus, and the links between early Homo species and Homo erectus. We use microcomputed tomography and landmark-free deformation-based three-dimensional geometric morphometrics to extract taxonomically informative data from the internal structure of postcanine teeth attributed to Early Pleistocene Homo in the southern African hominin-bearing sites of Sterkfontein, Swartkrans, Drimolen, and Kromdraai B. Our results indicate that, from our sample of 23 specimens, only 4 are unambiguously attributed to Homo, 3 of them coming from Swartkrans member 1 (SK 27, SK 847, and SKX 21204) and 1 from Sterkfontein (Sts 9). Three other specimens from Sterkfontein (StW 80 and 81, SE 1508, and StW 669) approximate the Homo condition in terms of overall enamel-dentine junction shape, but retain Australopithecus-like dental traits, and their generic status remains unclear. The other specimens, including SK 15, present a dominant australopith dental signature. In light of these results, previous dietary and ecological interpretations can be reevaluated, showing that the geochemical signal of one tooth from Kromdraai (KB 5223) and two from Swartkrans (SK 96 and SKX 268) is consistent with that of australopiths.


Assuntos
Hominidae , Dente , Animais , Fósseis , Filogenia , Dente/diagnóstico por imagem , Microtomografia por Raio-X
5.
J Hum Evol ; 165: 103163, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35299091

RESUMO

Homo erectus s.l. is key for deciphering the origin and subsequent evolution of genus Homo. However, the characterization of this species is hindered by the existence of multiple variants in both mainland and insular Asia, as a result of divergent chronogeographical evolutionary trends, genetic isolation, and interbreeding with other human species. Previous research has shown that cochlear morphology embeds taxonomic and phylogenetic information that may help infer the phylogenetic relationships among hominin species. Here we describe the cochlear morphology of two Indonesian H. erectus individuals (Sangiran 2 and 4), and compare it with a sample of australopiths, Middle to Late Pleistocene humans, and extant humans by means of linear measurements and both principal components and canonical variates analyses performed on shape ratios. Our results indicate that H. erectus displays a mosaic morphology that combines plesiomorphic (australopithlike) features (such as a chimplike round cochlear cross section and low cochlear thickness), with derived characters of later humans (a voluminous and long cochlea, possibly related to hearing abilities)-consistent with the more basal position of H. erectus. Our results also denote substantial variation between the two studied individuals, particularly in the length and radius of the first turn, as well as cross-sectional shape. Given the small size of the available sample, it is not possible to discern whether such differences merely reflect intraspecific variation among roughly coeval H. erectus individuals or whether they might result from greater age differences between them than currently considered. However, our results demonstrate that most characters found in later humans were already present in Indonesian H. erectus, with the exception of Neanderthals, which display an autapomorphic condition relative to other Homo species.


Assuntos
Fósseis , Hominidae , Animais , Evolução Biológica , Cóclea , Hominidae/anatomia & histologia , Humanos , Indonésia , Filogenia
6.
Sci Rep ; 10(1): 19053, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33149180

RESUMO

Third permanent molars (M3s) are the last tooth to form but have not been used to estimate age at dental maturation in early fossil hominins because direct histological evidence for the timing of their growth has been lacking. We investigated an isolated maxillary M3 (SK 835) from the 1.5 to 1.8-million-year-old (Mya) site of Swartkrans, South Africa, attributed to Paranthropus robustus. Tissue proportions of this specimen were assessed using 3D X-ray micro-tomography. Thin ground sections were used to image daily growth increments in enamel and dentine. Transmitted light microscopy and synchrotron X-ray fluorescence imaging revealed fluctuations in Ca concentration that coincide with daily growth increments. We used regional daily secretion rates and Sr marker-lines to reconstruct tooth growth along the enamel/dentine and then cementum/dentine boundaries. Cumulative growth curves for increasing enamel thickness and tooth height and age-of-attainment estimates for fractional stages of tooth formation differed from those in modern humans. These now provide additional means for assessing late maturation in early hominins. M3 formation took ≥ 7 years in SK 835 and completion of the roots would have occurred between 11 and 14 years of age. Estimated age at dental maturation in this fossil hominin compares well with what is known for living great apes.


Assuntos
Fósseis , Hominidae , Dente Serotino/anatomia & histologia , Dente Serotino/citologia , Odontogênese , Animais , Esmalte Dentário/anatomia & histologia , Esmalte Dentário/citologia , Dente Serotino/crescimento & desenvolvimento , África do Sul
7.
Am J Phys Anthropol ; 172(4): 714-722, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32449177

RESUMO

OBJECTIVES: The Pleistocene taxon Paranthropus robustus was established in 1938 following the discovery at Kromdraai B, South Africa, of the partial cranium TM 1517a and associated mandible TM 1517b. Shortly thereafter, a distal humerus (TM 1517g), a proximal ulna (TM 1517e), and a distal hallucial phalanx (TM 1517k) were collected nearby at the site, and were considered to be associated with the holotype. TM 1517a-b represents an immature individual; however, no analysis of the potentially associated postcranial elements has investigated the presence of any endostructural remnant of recent epiphyseal closure. This study aims at tentatively detecting such traces in the three postcranial specimens from Kromdraai B. MATERIALS AND METHODS: By using µXCT techniques, we assessed the developmental stage of the TM 1517b's C-M3 roots and investigated the inner structure of TM 1517g, TM 1517e, and TM 1517k. RESULTS: The M2 shows incompletely closed root apices and the M3 a half-completed root formation stage. The distal humerus was likely completely fused, while the proximal ulna and the distal hallucial phalanx preserve endosteal traces of the diaphyseo-epiphyseal fusion process. DISCUSSION: In the hominin fossil record, there are few unambiguously associated craniodental and postcranial remains sampling immature individuals, an essential condition for assessing the taxon-specific maturational patterns. Our findings corroborate the original association of the craniodental and postcranial remains representing the P. robustus type specimen. As with other Plio-Pleistocene hominins, the odonto-postcranial maturational pattern of TM 1517 more closely fits an African great ape rather than the extant human pattern.


Assuntos
Osso e Ossos/anatomia & histologia , Fósseis , Hominidae/anatomia & histologia , Hominidae/crescimento & desenvolvimento , Dente/anatomia & histologia , Animais , Antropologia Física , Evolução Biológica , Feminino , Masculino , África do Sul , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...