Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(10): 6706-6720, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38421812

RESUMO

Two-dimensional (2D) halide perovskites are exquisite semiconductors with great structural tunability. They can incorporate a rich variety of organic species that not only template their layered structures but also add new functionalities to their optoelectronic characteristics. Here, we present a series of new methylammonium (CH3NH3+ or MA)-based 2D Ruddlesden-Popper perovskites templated by dimethyl carbonate (CH3OCOOCH3 or DMC) solvent molecules. We report the synthesis, detailed structural analysis, and characterization of four new compounds: MA2(DMC)PbI4 (n = 1), MA3(DMC)Pb2I7 (n = 2), MA4(DMC)Pb3I10 (n = 3), and MA3(DMC)Pb2Br7 (n = 2). Notably, these compounds represent unique structures with MA as the sole organic cation both within and between the perovskite sheets, while DMC molecules occupy a tight space between the MA cations in the interlayer. They form hydrogen-bonded [MA···DMC···MA]2+ complexes that act as spacers, preventing the perovskite sheets from condensing into each other. We report one of the shortest interlayer distances (∼5.7-5.9 Å) in solvent-incorporated 2D halide perovskites. Furthermore, the synthesized crystals exhibit similar optical characteristics to other 2D perovskite systems, including narrow photoluminescence (PL) signals. The density functional theory (DFT) calculations confirm their direct-band-gap nature. Meanwhile, the phase stability of these systems was found to correlate with the H-bond distances and their strengths, decreasing in the order MA3(DMC)Pb2I7 > MA4(DMC)Pb3I10 > MA2(DMC)PbI4 ∼ MA3(DMC)Pb2Br7. The relatively loosely bound nature of DMC molecules enables us to design a thermochromic cell that can withstand 25 cycles of switching between two colored states. This work exemplifies the unconventional role of the noncharged solvent molecule in templating the 2D perovskite structure.

2.
Nat Commun ; 12(1): 616, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504813

RESUMO

Hybrid energy-harvesting systems that capture both wave and solar energy from the oceans using triboelectric nanogenerators and photovoltaic cells are promising renewable energy solutions. However, ubiquitous shadows cast from moving objects in these systems are undesirable as they degrade the performance of the photovoltaic cells. Here we report a shadow-tribo-effect nanogenerator that hybrids tribo-effect and shadow-effect together to overcome this issue. Several fiber-supercapacitors are integrated with the shadow-tribo-effect nanogenerator to form a self-charging power system. To capture and store wave/solar energy from oceans, an energy ball based on the self-charging power system is demonstrated. By harnessing the shadow-effect, i.e. the shadow of the moving object in the energy ball, the charging time shortens to 253.3 s to charge the fiber-supercapacitors to the same voltage (0.3 V) as using pure tribo-effect. This cost-effective method to harvest and store the wave/solar energy from the oceans in this work is expected to inspire next-generation large-scale blue energy harvesting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...