Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Semantics ; 9(1): 15, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29743102

RESUMO

BACKGROUND: Prompted by the frequency of concomitant use of prescription drugs with natural products, and the lack of knowledge regarding the impact of pharmacokinetic-based natural product-drug interactions (PK-NPDIs), the United States National Center for Complementary and Integrative Health has established a center of excellence for PK-NPDI. The Center is creating a public database to help researchers (primarly pharmacologists and medicinal chemists) to share and access data, results, and methods from PK-NPDI studies. In order to represent the semantics of the data and foster interoperability, we are extending the Drug-Drug Interaction and Evidence Ontology (DIDEO) to include definitions for terms used by the data repository. This is feasible due to a number of similarities between pharmacokinetic drug-drug interactions and PK-NPDIs. METHODS: To achieve this, we set up an iterative domain analysis in the following steps. In Step 1 PK-NPDI domain experts produce a list of terms and definitions based on data from PK-NPDI studies, in Step 2 an ontology expert creates ontologically appropriate classes and definitions from the list along with class axioms, in Step 3 there is an iterative editing process during which the domain experts and the ontology experts review, assess, and amend class labels and definitions and in Step 4 the ontology expert implements the new classes in the DIDEO development branch. This workflow often results in different labels and definitions for the new classes in DIDEO than the domain experts initially provided; the latter are preserved in DIDEO as separate annotations. RESULTS: Step 1 resulted in a list of 344 terms. During Step 2 we found that 9 of these terms already existed in DIDEO, and 6 existed in other OBO Foundry ontologies. These 6 were imported into DIDEO; additional terms from multiple OBO Foundry ontologies were also imported, either to serve as superclasses for new terms in the initial list or to build axioms for these terms. At the time of writing, 7 terms have definitions ready for review (Step 2), 64 are ready for implementation (Step 3) and 112 have been pushed to DIDEO (Step 4). Step 2 also suggested that 26 terms of the original list were redundant and did not need implementation; the domain experts agreed to remove them. Step 4 resulted in many terms being added to DIDEO that help to provide an additional layer of granularity in describing experimental conditions and results, e.g. transfected cultured cells used in metabolism studies and chemical reactions used in measuring enzyme activity. These terms also were integrated into the NaPDI repository. CONCLUSION: We found DIDEO to provide a sound foundation for semantic representation of PK-NPDI terms, and we have shown the novelty of the project in that DIDEO is the only ontology in which NPDI terms are formally defined.


Assuntos
Ontologias Biológicas , Produtos Biológicos/farmacologia , Interações Medicamentosas
2.
Drug Metab Dispos ; 46(6): 835-845, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29572333

RESUMO

A total of 103 drugs (including 14 combination drugs) were approved by the U.S. Food and Drug Administration from 2013 to 2016. Pharmacokinetic-based drug interaction profiles were analyzed using the University of Washington Drug Interaction Database, and the clinical relevance of these observations was characterized based on information from new drug application reviews. CYP3A was involved in approximately two-thirds of all drug-drug interactions (DDIs). Transporters (alone or with enzymes) participated in about half of all interactions, but most of these were weak-to-moderate interactions. When considered as victims, eight new molecular entities (NMEs; cobimetinib, ibrutinib, isavuconazole, ivabradine, naloxegol, paritaprevir, simeprevir, and venetoclax) were identified as sensitive substrates of CYP3A, two NMEs (pirfenidone and tasimelteon) were sensitive substrates of CYP1A2, one NME (dasabuvir) was a sensitive substrate of CYP2C8, one NME (eliglustat) was a sensitive substrate of CYP2D6, and one NME (grazoprevir) was a sensitive substrate of OATP1B1/3 (with changes in exposure greater than 5-fold when coadministered with a strong inhibitor). Approximately 75% of identified CYP3A substrates were also substrates of P-glycoprotein. As perpetrators, most clinical DDIs involved weak-to-moderate inhibition or induction. Only idelalisib showed strong inhibition of CYP3A, and lumacaftor behaved as a strong CYP3A inducer. Among drugs with large changes in exposure (≥5-fold), whether as victim or perpetrator, the most-represented therapeutic classes were antivirals and oncology drugs, suggesting a significant risk of clinical DDIs in these patient populations.


Assuntos
Interações Medicamentosas/fisiologia , Preparações Farmacêuticas/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Indutores das Enzimas do Citocromo P-450/farmacocinética , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Estados Unidos , United States Food and Drug Administration
3.
AMIA Annu Symp Proc ; 2018: 279-287, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30815066

RESUMO

Pharmacokinetic interactions between natural products and conventional drugs can adversely impact patient outcomes. These complex interactions present unique challenges that require clear communication to researchers. We are creating a public information portal to facilitate researchers' access to credible evidence about these interactions. As part of a user-centered design process, three types of intended researchers were surveyed: drug-drug interaction scientists, clinical pharmacists, and drug compendium editors. Of the 23 invited researchers, 17 completed the survey. The researchers suggested a number of specific requirements for a natural product-drug interaction information resource, including specific information about a given interaction, the potential to cause adverse effects, and the clinical importance. Results were used to develop user personas that provided the development team with a concise and memorable way to represent information needs of the three main researcher types and a common basis for communicating the design's rationale.


Assuntos
Produtos Biológicos , Bases de Dados Factuais , Interações Ervas-Drogas , Farmacêuticos , Pesquisadores , Acesso à Informação , Humanos , National Center for Complementary and Integrative Health (U.S.) , Farmacopeias como Assunto , Estados Unidos
4.
J Pharm Sci ; 106(9): 2312-2325, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28414144

RESUMO

In recent years, an increasing number of clinical drug-drug interactions (DDIs) have been attributed to inhibition of intestinal organic anion-transporting polypeptides (OATPs); however, only a few of these DDI results were reflected in drug labels. This review aims to provide a thorough analysis of intestinal OATP-mediated pharmacokinetic-based DDIs, using both in vitro and clinical investigations, highlighting the main mechanistic findings and discussing their clinical relevance. On the basis of pharmacogenetic and clinical DDI results, a total of 12 drugs were identified as possible clinical substrates of OATP2B1 and OATP1A2. Among them, 3 drugs, namely atenolol, celiprolol, and fexofenadine, have emerged as the most sensitive substrates to evaluate clinical OATP-mediated intestinal DDIs when interactions with P-glycoprotein by the test compound can be ruled out. With regard to perpetrators, 8 dietary or natural products and 1 investigational drug, ronacaleret (now terminated), showed clinical intestinal inhibition attributable to OATPs, producing ≥20% decreases in area under the plasma concentration-time curve of the co-administered drug. Common juices, such as apple juice, grapefruit juice, and orange juice, are considered potent inhibitors of intestinal OATP2B1 and OATP1A2 (decreasing exposure of the co-administered substrate by ∼85%) and may be adequate prototype inhibitors to investigate intestinal DDIs mediated by OATPs.


Assuntos
Interações Medicamentosas/fisiologia , Mucosa Intestinal/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Preparações Farmacêuticas/metabolismo , Bebidas , Interações Alimento-Droga/fisiologia , Humanos , Absorção Intestinal/fisiologia
5.
Drug Metab Dispos ; 44(3): 343-51, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26681736

RESUMO

The cytochrome P450 (P450) enzymes are the predominant enzyme system involved in human drug metabolism. Alterations in the expression and/or activity of these enzymes result in changes in pharmacokinetics (and consequently the pharmacodynamics) of drugs that are metabolized by this set of enzymes. Apart from changes in activity as a result of drug-drug interactions (by P450 induction or inhibition), the P450 enzymes can exhibit substantial interindividual variation in basal expression and/or activity, leading to differences in the rates of drug elimination and response. This interindividual variation can result from a myriad of factors, including genetic variation in the promoter or coding regions, variation in transcriptional regulators, alterations in microRNA that affect P450 expression, and ontogenic changes due to exposure to xenobiotics during the developmental and early postnatal periods. Other than administering a probe drug or cocktail of drugs to obtain the phenotype or conducting a genetic analysis to determine genotype, methods to determine interindividual variation are limited. Phenotyping via a probe drug requires exposure to a xenobiotic, and genotyping is not always well correlated with phenotype, making both methodologies less than ideal. This article describes recent work evaluating the effect of some of these factors on interindividual variation in human P450-mediated metabolism and the potential utility of endogenous probe compounds to assess rates of drug metabolism among individuals.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Variação Genética/genética , Inativação Metabólica/genética , Xenobióticos/metabolismo , Animais , Interações Medicamentosas/genética , Humanos , Fenótipo
6.
Pharmacotherapy ; 35(4): 361-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25757445

RESUMO

STUDY OBJECTIVES: To evaluate the effect of Roux-en-Y gastric bypass surgery (RYGB) on the pharmacokinetics of midazolam (a CYP3A4 substrate) and digoxin (a P-glycoprotein substrate). DESIGN: Prospective, nonblinded, longitudinal, single-dose pharmacokinetic study in three phases: presurgery baseline and postoperative assessments at 3 and 12 months. PATIENTS: Twelve obese patients meeting current standards for bariatric surgery. MEASUREMENTS AND MAIN RESULTS: At each study visit, patients received a single dose of oral digoxin and midazolam at 8 a.m. Blood samples were collected at regular intervals for 24 hours after dosing. Continuous 12-lead electrocardiogram (EKG), heart rate, blood pressure, and respiratory rate were monitored, and pharmacokinetic parameters from the three visits were compared. The peak plasma concentration (Cmax ) of midazolam increased by 66% and 71% at 3- and 12-month post-RYGB (p=0.017 and p=0.001, respectively), whereas the median time to peak concentration (Tmax ) was reduced by 50%. The mean Cmax for 1'-hydroxymidazolam increased by 87% and 80% at 3 and 12 months (p=0.001 and p<0.001, respectively). However, neither the area under the concentration-time curve (AUC) for midazolam nor the metabolite-to-parent AUC ratio changed significantly over time. For digoxin, the median Tmax decreased from 40 minutes at baseline to 30 and 20 minutes at 3 and 12 months, respectively. The mean AUC for digoxin, heart rate, and EKG patterns were similar across the three study phases. CONCLUSION: Contemporary proximal RYGB increases the rate of drug absorption without significantly changing the overall exposure to midazolam and digoxin. The Cmax of a CYP3A4 substrate with a high extraction ratio was substantially increased after RYGB.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Citocromo P-450 CYP3A/metabolismo , Digoxina/farmacocinética , Derivação Gástrica/efeitos adversos , Midazolam/farmacocinética , Adulto , Feminino , Absorção Gastrointestinal , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Obesidade/metabolismo , Obesidade/cirurgia , Projetos Piloto , Estudos Prospectivos
7.
Pharmacogenomics ; 15(16): 1947-62, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25521354

RESUMO

AIM: We sought to discover endogenous urinary biomarkers of human CYP2D6 activity. PATIENTS & METHODS: Healthy pediatric subjects (n = 189) were phenotyped using dextromethorphan and randomized for candidate biomarker selection and validation. Global urinary metabolomics was performed using liquid chromatography quadrupole time-of-flight mass spectrometry. Candidate biomarkers were tested in adults receiving fluoxetine, a CYP2D6 inhibitor. RESULTS: A biomarker, M1 (m/z 444.3102) was correlated with CYP2D6 activity in both the pediatric training and validation sets. Poor metabolizers had undetectable levels of M1, whereas it was present in subjects with other phenotypes. In adult subjects, a 9.56-fold decrease in M1 abundance was observed during CYP2D6 inhibition. CONCLUSION: Identification and validation of M1 may provide a noninvasive means of CYP2D6 phenotyping.


Assuntos
Biomarcadores/urina , Citocromo P-450 CYP2D6/genética , Fluoxetina/administração & dosagem , Metabolômica , Adolescente , Adulto , Criança , Inibidores do Citocromo P-450 CYP2D6/administração & dosagem , Dextrometorfano/urina , Dextrorfano/urina , Feminino , Voluntários Saudáveis , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...