Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37960507

RESUMO

Introduction: Intra-abdominal pressure (IAP) monitoring is crucial for the detection and prevention of intra-abdominal hypertension (IAH) and abdominal compartment syndrome (ACS). In the 1970s, air-filled catheters (AFCs) for urodynamic studies were introduced as a solution to overcome the limitations of water-perfused catheters. Recent studies have shown that for correct IAP measurement with traditional AFC, the bladder needs to be primed with 25 mL of saline solution to allow pressure wave transmission to the transducer outside of the body, which limits continuous IAP monitoring. Methods: In this study, a novel triple balloon, air-filled TraumaGuard (TG) catheter system from Sentinel Medical Technologies (Jacksonville, FL, USA) with a unique balloon-in-balloon design was evaluated in a porcine and cadaver model of IAH via laparoscopy (IAPgold). Results: In total, 27 and 86 paired IAP measurements were performed in two pigs and one human cadaver, respectively. The mean IAPTG was 20.7 ± 10.7 mmHg compared to IAPgold of 20.3 ± 10.3 mmHg in the porcine study. In the cadaver investigation, the mean IAPTG was 15.6 ± 10.8 mmHg compared to IAPgold of 14.4 ± 10.4 mmHg. The correlation, concordance, bias, precision, limits of agreement, and percentage error were all in accordance with the WSACS (Abdominal Compartment Society) recommendations and guidelines for research. Conclusions: These findings support the use of the TG catheter for continuous IAP monitoring, providing early detection of elevated IAP, thus enabling the potential for prevention of IAH and ACS. Confirmation studies with the TraumaGuard system in critically ill patients are warranted to further validate these findings.


Assuntos
Hipertensão Intra-Abdominal , Humanos , Animais , Suínos , Hipertensão Intra-Abdominal/diagnóstico , Estado Terminal , Catéteres
2.
J Clin Med ; 12(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834904

RESUMO

Introduction: Intra-abdominal pressure (IAP) has been recognized as an important vital sign in critically ill patients. Due to the high prevalence and incidence of intra-abdominal hypertension in surgical (trauma, burns, cardiac) and medical (sepsis, liver cirrhosis, acute kidney injury) patients, continuous IAP (CIAP) monitoring has been proposed. This research was aimed at validating a new CIAP monitoring device, the TraumaGuard from Sentinel Medical Technologies, against the gold standard (height of a water column) in an in vitro setting and performing a comparative analysis among different CIAP measurement technologies (including two intra-gastric and two intra-bladder measurement devices). A technical and clinical guideline addressing the strengths and weaknesses of each device is provided as well. Methods: Five different CIAP measurement devices (two intra-gastric and three intra-vesical), including the former CiMON, Spiegelberg, Serenno, TraumaGuard, and Accuryn, were validated against the gold standard water column pressure in a bench-top abdominal phantom. The impacts of body temperature and bladder fill volume (for the intra-vesical methods) were evaluated for each system. Subsequently, 48 h of continuous monitoring (n = 2880) on top of intermittent IAP (n = 300) readings were captured for each device. Using Pearson's and Lin's correlations, concordance, and Bland and Altman analyses, the accuracy, precision, percentage error, correlation and concordance coefficients, bias, and limits of agreement were calculated for all the different devices. We also performed error grid analysis on the CIAP measurements to provide an overview of the involved risk level due to wrong IAP measurements and calculated the area under the curve and time above a certain IAP threshold. Lastly, the robustness of each system in tracking the dynamic variations of the raw IAP signal due to respirations and heartbeats was evaluated as well. Results: The TraumaGuard was the only technology able to measure the IAP with an empty artificial bladder. No important temperature dependency was observed for the investigated devices except for the Spiegelberg, which displayed higher IAP values when the temperature was increased, but this could be adjusted through recalibration. All the studied devices showed excellent ability for IAP monitoring, although the intra-vesical IAP measurements seem more reliable. In general, the TraumaGuard, Accuryn, and Serenno showed better accuracy compared to intra-gastric measurement devices. On average, biases of +0.71, +0.93, +0.29, +0.25, and -0.06 mm Hg were observed for the CiMON, Spiegelberg, Serenno, TraumaGuard, and Accuryn, respectively. All of the equipment showed percentage errors smaller than 25%. Regarding the correlation and concordance coefficients, the Serenno and TraumaGuard showed the best results (R2 = 0.98, p = 0.001, concordance coefficient of 99.5%). Error grid analysis based on the Abdominal Compartment Society guidelines showed a very low associated risk level of inappropriate treatment strategies due to erroneous IAP measurements. Regarding the dynamic tracings of the raw IAP signal, all the systems can track respiratory variations and derived parameters; however, the CiMON was slightly superior compared to the other technologies. Conclusions: According to the research guidelines of the Abdominal Compartment Society (WSACS), this in vitro study shows that the TraumaGuard can be used interchangeably with the gold standard for measuring continuous IAP, even in an empty artificial bladder. Confirmation studies with the TraumaGuard in animals and humans are warranted to further validate these findings.

3.
J Clin Monit Comput ; 37(5): 1351-1359, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37133628

RESUMO

Increased intra-abdominal pressure (IAP) is an important vital sign in critically ill patients and has a negative impact on morbidity and mortality. This study aimed to validate a novel non-invasive ultrasonographic approach to IAP measurement against the gold standard intra-bladder pressure (IBP) method. We conducted a prospective observational study in an adult medical ICU of a university hospital. IAP measurements using ultrasonography by two independent operators, with different experience levels (experienced, IAPUS1; inexperienced, IAPUS2), were compared with the gold standard IBP method performed by a third blinded operator. For the ultrasonographic method, decremental external pressure was applied on the anterior abdominal wall using a bottle filled with decreasing volumes of water. Ultrasonography looked at peritoneal rebound upon brisk withdrawal of the external pressure. The loss of peritoneal rebound was identified as the point where IAP was equal to or above the applied external pressure. Twenty-one patients underwent 74 IAP readings (range 2-15 mmHg). The number of readings per patient was 3.5 ± 2.5, and the abdominal wall thickness was 24.6 ± 13.1 mm. Bland and Altman's analysis showed a bias (0.39 and 0.61 mmHg) and precision (1.38 and 1.51 mmHg) for the comparison of IAPUS1 and IAPUS2 and vs. IBP, respectively with small limits of agreement that were in line with the research guidelines of the Abdominal Compartment Society (WSACS). Our novel ultrasound-based IAP method displayed good correlation and agreement between IAP and IBP at levels up to 15 mmHg and is an excellent solution for quick decision-making in critically ill patients.


Assuntos
Cavidade Abdominal , Estado Terminal , Adulto , Humanos , Estudos de Viabilidade , Pressão , Unidades de Terapia Intensiva , Abdome/diagnóstico por imagem
4.
Life (Basel) ; 12(9)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36143427

RESUMO

BACKGROUND: General pathophysiological mechanisms regarding associations between fluid administration and intra-abdominal hypertension (IAH) are evident, but specific effects of type, amount, and timing of fluids are less clear. OBJECTIVES: This review aims to summarize current knowledge on associations between fluid administration and intra-abdominal pressure (IAP) and fluid management in patients at risk of intra-abdominal hypertension and abdominal compartment syndrome (ACS). METHODS: We performed a structured literature search from 1950 until May 2021 to identify evidence of associations between fluid management and intra-abdominal pressure not limited to any specific study or patient population. Findings were summarized based on the following information: general concepts of fluid management, physiology of fluid movement in patients with intra-abdominal hypertension, and data on associations between fluid administration and IAH. RESULTS: We identified three randomized controlled trials (RCTs), 38 prospective observational studies, 29 retrospective studies, 18 case reports in adults, two observational studies and 10 case reports in children, and three animal studies that addressed associations between fluid administration and IAH. Associations between fluid resuscitation and IAH were confirmed in most studies. Fluid resuscitation contributes to the development of IAH. However, patients with IAH receive more fluids to manage the effect of IAH on other organ systems, thereby causing a vicious cycle. Timing and approach to de-resuscitation are of utmost importance, but clear indicators to guide this decision-making process are lacking. In selected cases, only surgical decompression of the abdomen can stop deterioration and prevent further morbidity and mortality. CONCLUSIONS: Current evidence confirms an association between fluid resuscitation and secondary IAH, but optimal fluid management strategies for patients with IAH remain controversial.

5.
Life (Basel) ; 12(8)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36013340

RESUMO

Introduction: Increased intra-abdominal pressure (IAP) has an important impact on morbidity and mortality in critically ill patients. The SERENNO Sentinel system (Serenno Medical, Yokne'am Illit, Israel) is a novel device that allows automatic and continuous IAP measurements. Aims: Pre-clinical validation in a bench model study comparing the new device with the gold standard method and two other continuous IAP measurement devices. Methods: IAP measurement with the novel SERENNO device (IAPSER) was compared with the gold standard IAPH2O (water column height) and two other automatic and continuous IAP measurement devices: IAPCiM measured via the CiMON device (Pulsion Medical Systems, Munich, Germany) and IAPSPIE measured using the Spiegelberg device (Spiegelberg, Hamburg, Germany), which previously received the CE mark for clinical applications. The IAP measurement was performed six times (n = 6) at each pressure value (between 0 and 35 mmHg) with different methods and the height of the water column in a bench-top phantom was used as the reference IAP for further interpretations. In addition to the quadruple comparisons, intra- and inter-observer variability of IAP measurements were also calculated. Correlation studies and Bland and Altman's analyses were performed in addition to the concordance study. Results: The CiMON and Spiegelberg devices showed a greater dynamic range and standard deviation when recording IAPCiM and IAPSPIE compared with IAPSER. In general, the maximum and minimum values of IAP recorded with each device (at each level of IAPH2O) were significantly different from each other. However, the average values were in very good agreement. The highest correlation was observed between IAPSER and IAPH2O, and IAPSER and IAPSPIE (R = 0.99, p = 0.001 for both comparisons and intra- and inter-observer measurements). Although the CiMON and SERENNO systems were in very good agreement with each other, a slightly smaller correlation coefficient was found between them (R = 0.95, p = 0.001, and R = 0.96, p = 0.001 for intra- and inter-observer measurements, respectively). When compared to the gold standard (IAPH2O), Bland and Altman's analysis showed a mean difference of +0.44, -0.25, and -0.04 mmHg for the intra-observer measurements and +0.18, -0.75, and -0.58 mmHg for the inter-observer measurements for IAPSER, IAPCiM, and IAPSPIE, respectively. IAPSER showed a small positive bias (overestimation), while IAPCiM and IAPSPIE showed a negative bias (underestimation) when compared to IAPH2O. Further statistical analysis showed a concordance coefficient of 100% with an excellent ability of the SERENNO system in tracking IAPH2O changes. Conclusions: Pre-clinical validation of a new IAP monitoring device (SERENNO) showed very promising results when compared with the gold standard and other continuous techniques; however, clinical trials should be followed as the next stage of the validation process. Based on the actual research guidelines, the SERENNO system can be used interchangeably with the gold standard.

6.
Sensors (Basel) ; 22(13)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35808504

RESUMO

Rubber is one of the most used materials in the world; however, raw rubber shows a relatively very low mechanical strength. Therefore, it needs to be cured before its ultimate applicatios. Curing process specifications, such as the curing time and temperature, influence the material properties of the final cured product. The transient radar method (TRM) is introduced as an alternative for vulcanization monitoring in this study. Three polyurethane-rubber samples with different curing times of 2, 4, and 5.5 min were studied by TRM to investigate the feasibility and robustness of the TRM in curing time monitoring. Additionally, the mechanical stiffness of the samples was investigated by using a unidirectional tensile test to investigate the potential correlations between curing time, dielectric permittivity, and stiffness. According to the results, the complex permittivity and stiffness of the samples with 2, 4, and 5.5 min of curing time was 17.33 ± 0.07 - (2.41 ± 0.04)j; 17.09 ± 0.05 - (4.90 ± 0.03)j; 23.60 ± 0.05 - (14.06 ± 0.06)j; and 0.29, 0.35, and 0.38 kPa, respectively. Further statistical analyses showed a correlation coefficient of 0.99 (p = 0.06), 0.80 (p = 0.40), and 0.92 (p = 0.25) between curing time-stiffness, curing time-permittivity (real part), and curing time-permittivity (imaginary part), respectively. The correlation coefficient between curing time and permittivity can show the potential of the TRM system in contact-free vulcanization monitoring, as the impact of vulcanization can be tracked by means of TRM.


Assuntos
Radar , Borracha , Poliuretanos , Temperatura
7.
Sensors (Basel) ; 21(18)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34577207

RESUMO

Intra-abdominal hypertension, defined as an intra-abdominal pressure (IAP) equal to or above 12 mmHg is one of the major risk-factors for increased morbidity (organ failure) and mortality in critically ill patients. Therefore, IAP monitoring is highly recommended in intensive care unit (ICU) patients to predict development of abdominal compartment syndrome and to provide a better care for patients hospitalized in the ICU. The IAP measurement through the bladder is the actual reference standard advocated by the abdominal compartment society; however, this measurement technique is cumbersome, non-continuous, and carries a potential risk for urinary tract infections and urethral injury. Using microwave reflectometry has been proposed as one of the most promising IAP measurement alternatives. In this study, a novel radar-based method known as transient radar method (TRM) has been used to monitor the IAP in an in vitro model with an advanced abdominal wall phantom. In the second part of the study, further regression analyses have been done to calibrate the TRM system and measure the absolute value of IAP. A correlation of -0.97 with a p-value of 0.0001 was found between the IAP and the reflection response of the abdominal wall phantom. Additionally, a quadratic relation with a bias of -0.06 mmHg was found between IAP obtained from the TRM technique and the IAP values recorded by a pressure gauge. This study showed a promising future for further developing the TRM technique to use it in clinical monitoring.


Assuntos
Hipertensão Intra-Abdominal , Radar , Cuidados Críticos , Estado Terminal , Humanos , Hipertensão Intra-Abdominal/diagnóstico , Monitorização Fisiológica
8.
J Clin Monit Comput ; 35(1): 51-70, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32700152

RESUMO

This review presents an overview of previously reported non-invasive intra-abdominal pressure (IAP) measurement techniques. Each section covers the basic physical principles and methodology of the various measurement techniques, the experimental results, and the advantages and disadvantages of each method. The most promising non-invasive methods for IAP measurement are microwave reflectometry and ultrasound assessment, in combination with an applied external force.

10.
Sensors (Basel) ; 20(1)2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31947748

RESUMO

Transient Radar Method (TRM) was recently proposed as a novel contact-free method for the characterization of multilayer dielectric structures including the geometric details. In this paper, we discuss and quantify the intrinsic and systematic errors of TRM. Also, solutions for mitigating these problems are elaborated extensively. The proposed solution for error correction will be applied to quantify experimentally the thickness of several single-layer dielectric structures with thicknesses varying from larger to smaller than the wavelength. We will show how the error correction method allows sub-wavelength thickness measurements around λ / 5 .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...