Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.090
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38758124

RESUMO

Determining whether an ectopic depolarization will lead to a self-perpetuating arrhythmia is of critical importance in determining arrhythmia risk, so it is necessary to understand what factors impact substrate vulnerability. This study sought to explore the impact of cell-to-cell heterogeneity in ion channel conductance on substrate vulnerability to arrhythmia by measuring the duration of the vulnerable window in computational models of 1-dimensional cables of ventricular cardiomyocytes. We began by using a population of uniform cable models to determine the mechanisms underlying the vulnerable window phenomenon. We found that in addition to the known importance of GNa, the conductances GCaL and GKr also play a minor role in determining the vulnerable window duration. We also found that a steeper slope of the repolarizing action potential during the vulnerable window correlated with a shorter vulnerable window duration in uniform cables. We applied our understanding from these initial simulations to an investigation of the vulnerable window in heterogeneous cable models. The heterogeneous cables displayed a great deal of intra-cable variation in vulnerable window duration, highly sensitive to the cardiomyocytes in the local environment of the ectopic stimulus. Coupling strength modulated not only the magnitude of the vulnerable window duration but also the extent of intra-tissue variability in vulnerable window duration.

2.
Commun Med (Lond) ; 4(1): 58, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532017

RESUMO

BACKGROUND: Natural cytokines are poorly suited as therapeutics for systemic administration due to suboptimal pharmacological and pharmacokinetic (PK) properties. Recombinant human interleukin-2 (rhIL-2) has shown promise for treatment of autoimmune (AI) disorders yet exhibits short systemic half-life and opposing immune responses that negate an appropriate therapeutic index. METHODS: A semi-synthetic microbial technology platform was used to engineer a site-specifically pegylated form of rhIL-2 with enhanced PK, specificity for induction of immune-suppressive regulatory CD4 + T cells (Tregs), and reduced stimulation of off-target effector T and NK cells. A library of rhIL-2 molecules was constructed with single site-specific, biorthogonal chemistry-compatible non-canonical amino acids installed near the interface where IL-2 engages its cognate receptor ßγ (IL-2Rßγ) signaling complex. Biorthogonal site-specific pegylation and functional screening identified variants that retained engagement of the IL-2Rα chain with attenuated potency at the IL-2Rßγ complex. RESULTS: Phenotypic screening in mouse identifies SAR444336 (SAR'336; formerly known as THOR-809), rhIL-2 pegylated at H16, as a potential development candidate that specifically expands peripheral CD4+ Tregs with upregulation of markers that correlate with their suppressive function including FoxP3, ICOS and Helios, yet minimally expands CD8 + T or NK cells. In non-human primate, administration of SAR'336 also induces dose-dependent expansion of Tregs and upregulated suppressive markers without significant expansion of CD8 + T or NK cells. SAR'336 administration reduces inflammation in a delayed-type hypersensitivity mouse model, potently suppressing CD4+ and CD8 + T cell proliferation. CONCLUSION: SAR'336 is a specific Treg activator, supporting its further development for the treatment of AI diseases.


Interleukin-2 (IL-2) is a protein that functions as a master regulator of immune responses. A key function of IL-2 is the stimulation of immune-regulatory cells that suppress autoimmune disease, which occurs when the body's immune system mistakenly attacks healthy tissues. However, therapeutic use of IL-2 is limited by its short duration of action and incomplete selectivity for immune-suppressive cells over off-target immune-stimulatory cells. We employ a platform that we have previously developed, which is a bacterial organism with an expanded DNA code, to identify a new version of IL-2, SAR444336 (SAR'336), with an extended duration of activity and increased selectivity for immune-suppressive cells. In mice and monkeys, SAR'336 was a specific activator of immune suppression, with minimal effect on immune cells that stimulate autoimmunity. Our results support further development of SAR'336 for treatment of autoimmune disorders.

4.
Cancer ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376917

RESUMO

BACKGROUND: COVID-19 can have a particularly detrimental effect on patients with cancer, but no studies to date have examined if the presence, or site, of metastatic cancer is related to COVID-19 outcomes. METHODS: Using the COVID-19 and Cancer Consortium (CCC19) registry, the authors identified 10,065 patients with COVID-19 and cancer (2325 with and 7740 without metastasis at the time of COVID-19 diagnosis). The primary ordinal outcome was COVID-19 severity: not hospitalized, hospitalized but did not receive supplemental O2 , hospitalized and received supplemental O2 , admitted to an intensive care unit, received mechanical ventilation, or died from any cause. The authors used ordinal logistic regression models to compare COVID-19 severity by presence and specific site of metastatic cancer. They used logistic regression models to assess 30-day all-cause mortality. RESULTS: Compared to patients without metastasis, patients with metastases have increased hospitalization rates (59% vs. 49%) and higher 30 day mortality (18% vs. 9%). Patients with metastasis to bone, lung, liver, lymph nodes, and brain have significantly higher COVID-19 severity (adjusted odds ratios [ORs], 1.38, 1.59, 1.38, 1.00, and 2.21) compared to patients without metastases at those sites. Patients with metastasis to the lung have significantly higher odds of 30-day mortality (adjusted OR, 1.53; 95% confidence interval, 1.17-2.00) when adjusting for COVID-19 severity. CONCLUSIONS: Patients with metastatic cancer, especially with metastasis to the brain, are more likely to have severe outcomes after COVID-19 whereas patients with metastasis to the lung, compared to patients with cancer metastasis to other sites, have the highest 30-day mortality after COVID-19.

5.
Eur J Appl Physiol ; 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236301

RESUMO

PURPOSE: To investigate the effects of blood flow restriction (BFR) on electromyographic amplitude (EMGRMS)-force relationships of the biceps brachii (BB) during a single high-load muscle action. METHODS: Twelve recreationally active males and eleven recreationally active females performed maximal voluntary contractions (MVCs), followed by an isometric trapezoidal muscle action of the elbow flexors at 70% MVC. Surface EMG was recorded from the BB during BFR and control (CON) visits. For BFR, cuff pressure was 60% of the pressure required to completely occlude blood at rest. Individual b (slope) and a terms (gain) were calculated from the log-transformed EMGRMS-force relationships during the linearly increasing and decreasing segments of the trapezoid. EMGRMS during the steady force segment was normalized to MVC EMGRMS. RESULTS: For BFR, the b terms were greater during the linearly increasing segment than the linearly decreasing segment (p < 0.001), and compared to the linearly increasing segment for CON (p < 0.001). The a terms for BFR were greater during the linearly decreasing than linearly increasing segment (p = 0.028). Steady force N-EMGRMS was greater for BFR than CON collapsed across sex (p = 0.041). CONCLUSION: BFR likely elicited additional recruitment of higher threshold motor units during the linearly increasing- and steady force-segment. The differences between activation and deactivation strategies were only observed with BFR, such as the b terms decreased and the a terms increased for the linearly decreasing segment in comparison to the increasing segment. However, EMGRMS-force relationships during the linearly increasing- and decreasing-segments were not different between sexes during BFR and CON.

7.
bioRxiv ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38260376

RESUMO

Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have gained traction as a powerful model in cardiac disease and therapeutics research, since iPSCs are self-renewing and can be derived from healthy and diseased patients without invasive surgery. However, current iPSC-CM differentiation methods produce cardiomyocytes with immature, fetal-like electrophysiological phenotypes, and the variety of maturation protocols in the literature results in phenotypic differences between labs. Heterogeneity of iPSC donor genetic backgrounds contributes to additional phenotypic variability. Several mathematical models of iPSC-CM electrophysiology have been developed to help understand the ionic underpinnings of, and to simulate, various cell responses, but these models individually do not capture the phenotypic variability observed in iPSC-CMs. Here, we tackle these limitations by developing a computational pipeline to calibrate cell preparation-specific iPSC-CM electrophysiological parameters. We used the genetic algorithm (GA), a heuristic parameter calibration method, to tune ion channel parameters in a mathematical model of iPSC-CM physiology. To systematically optimize an experimental protocol that generates sufficient data for parameter calibration, we created simulated datasets by applying various protocols to a population of in silico cells with known conductance variations, and we fitted to those datasets. We found that calibrating models to voltage and calcium transient data under 3 varied experimental conditions, including electrical pacing combined with ion channel blockade and changing buffer ion concentrations, improved model parameter estimates and model predictions of unseen channel block responses. This observation held regardless of whether the fitted data were normalized, suggesting that normalized fluorescence recordings, which are more accessible and higher throughput than patch clamp recordings, could sufficiently inform conductance parameters. Therefore, this computational pipeline can be applied to different iPSC-CM preparations to determine cell line-specific ion channel properties and understand the mechanisms behind variability in perturbation responses.

8.
Appl Physiol Nutr Metab ; 49(1): 121-124, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37552893

RESUMO

Blood osmolality is considered the gold standard hydration assessment, but has limited application for technical and invasive reasons. Paired antecubital-venous blood and fingertip-capillary blood were collected pre- and 30 min post-drinking 600 mL water in 55 male/female participants. No bias (0.2 mOsmo/kg, limits of agreement = -2.5 to 2.8 mOsmo/kg) was found between sampling methods, with high linear correlation (Spearman's r = 0.95, P < 0.001). Capillary blood sampling offers an accurate less-invasive method for determining serum osmolality than venous blood sampling.


Assuntos
Desidratação , Água , Humanos , Masculino , Feminino , Concentração Osmolar
9.
Ann Emerg Med ; 83(2): 108-119, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37855791

RESUMO

STUDY OBJECTIVE: Racial and ethnic bias in health care has been documented at structural, organizational, and clinical levels, impacting emergency care, including agitation management in the emergency department (ED). Little is known about the experiences of racial and ethnic minority ED clinicians caring for racial and ethnic minority groups, especially during their agitated state. The objective of this study was to explore the lived experiences of racial and ethnic minority ED clinicians who have treated patients with agitation in the ED. METHODS: We performed semistructured individual interviews of Black, Latino, and multiracial clinicians who worked at 1 of 3 EDs from an urban quaternary care medical center in the Northeast United States between August 2020 and June 2022. We performed thematic analysis through open coding of initial transcripts and identifying additional codes through sequential iterative rounds of group discussion. Once the codebook was finalized and applied to all transcripts, the team identified key themes and subthemes. RESULTS: Of the 27 participants interviewed, 14 (52%) identified as Black, 9 (33%) identified as Hispanic/Latino, and 4 (15%) identified as multiracial and/or other race and ethnicity. Three primary themes emerged from racial and ethnic minority clinician experiences of managing agitation: witness of perceived bias during clinical interactions with patients of color who bear racialized presumptions of agitation, moral injury and added workload to address perceived biased agitation management practices while facing discrimination in the workplace, and natural advocacy and allyship for agitated patients of color based on a shared identity and life experience. CONCLUSIONS: Our study found that through their shared minority status, racial and ethnic minority clinicians had a unique vantage point to observe perceived bias in the management of agitation in minority patients. Although they faced added challenges as racial and ethnic minority clinicians, their allyship offered potential mitigation strategies for addressing disparities in caring for an underserved and historically marginalized patient population.


Assuntos
Serviço Hospitalar de Emergência , Etnicidade , Grupos Minoritários , Médicos , Grupos Raciais , Humanos , Hispânico ou Latino , Estados Unidos , Negro ou Afro-Americano , Agitação Psicomotora/terapia , Discriminação Percebida
10.
Eur J Appl Physiol ; 124(4): 1121-1129, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37889287

RESUMO

PURPOSE: To determined sex differences in absolute- and %-reductions in blood flow during intermittent muscular contractions as well as relationships between blood flow reductions and time to task failure (TTF). METHODS: Thirteen males (25 ± 4 years) and 13 females (22 ± 5 years) completed intermittent isometric trapezoidal forearm flexion at 50% maximal voluntary contraction until task failure. Doppler ultrasound was used to measure brachial artery blood flow (BABF) during the 12-s plateau phase and 12-s relaxation phase. RESULTS: Target torque was less in females than males (24 ± 5 vs. 42 ± 7 Nm; p < 0.001); however, TTF was not different between sexes (F: 425 ± 187 vs. M: 401 ± 158 s; p = 0.72). Relaxation-phase BABF at end-exercise was less in females than males (435 ± 161 vs. 937 ± 281 mL/min; p < 0.001) but contraction-phase BABF was not different (127 ± 46 vs. 190 ± 99 mL/min; p = 0.42). Absolute- and %-reductions in BABF by contraction were less in females than males (309 ± 146 vs. 747 ± 210 mL/min and 69 ± 10 vs. 80% ± 6%, respectively; both p < 0.01) and were associated with target torque independent of sex (r = 0.78 and 0.56, respectively; both p < 0.01). Absolute BABF reduction per target torque (mL/min/Nm) and TTF were positively associated in males (r = 0.60; p = 0.031) but negatively associated in females (r = - 0.61; p = 0.029). CONCLUSIONS: This study provides evidence that females incur less proportional reduction in limb blood flow from muscular contraction than males at a matched relative intensity suggesting females may maintain higher levels of muscle oxygen delivery and metabolite removal than males across the contraction-relaxation cycle of intermittent exercise.


Assuntos
Fadiga Muscular , Músculo Esquelético , Humanos , Masculino , Feminino , Músculo Esquelético/fisiologia , Fadiga Muscular/fisiologia , Caracteres Sexuais , Contração Isométrica/fisiologia , Contração Muscular/fisiologia , Extremidade Superior , Torque
11.
J Endocrinol ; 260(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109257

RESUMO

Adverse environmental conditions before birth are known to programme adult metabolic and endocrine phenotypes in several species. However, whether increments in fetal cortisol concentrations of the magnitude commonly seen in these conditions can cause developmental programming remains unknown. Thus, this study investigated the outcome of physiological increases in fetal cortisol concentrations on glucose-insulin dynamics and pituitary-adrenal function in adult sheep. Compared with saline treatment, intravenous fetal cortisol infusion for 5 days in late gestation did not affect birthweight but increased lamb body weight at 1-2 weeks after birth. Adult glucose dynamics, insulin sensitivity and insulin secretion were unaffected by prenatal cortisol overexposure, assessed by glucose tolerance tests, hyperinsulinaemic-euglycaemic clamps and acute insulin administration. In contrast, prenatal cortisol infusion induced adrenal hypo-responsiveness in adulthood with significantly reduced cortisol responses to insulin-induced hypoglycaemia and exogenous adrenocorticotropic hormone (ACTH) administration relative to saline treatment. The area of adrenal cortex expressed as a percentage of the total cross-sectional area of the adult adrenal gland was also lower after prenatal cortisol than saline infusion. In adulthood, basal circulating ACTH but not cortisol concentrations were significantly higher in the cortisol than saline-treated group. The results show that cortisol overexposure before birth programmes pituitary-adrenal development with consequences for adult stress responses. Physiological variations in cortisol concentrations before birth may, therefore, have an important role in determining adult phenotypical diversity and adaptability to environmental challenges.


Assuntos
Hormônio Adrenocorticotrópico , Hidrocortisona , Feminino , Gravidez , Animais , Ovinos , Hidrocortisona/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Feto/metabolismo , Glândulas Suprarrenais/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Idade Gestacional
12.
Br Dent J ; 235(10): 764, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-38001181
13.
Artigo em Inglês | MEDLINE | ID: mdl-37928887

RESUMO

Background: Myoclonus dystonia syndrome typically results from autosomal dominant mutations in the epsilon-sarcoglycan gene (SGCE) via the paternally expressed allele on chromosome 7q21. There is evidence that deep brain stimulation (DBS) is beneficial for this genotype, however, there are few prior case reports on DBS for myoclonus dystonia syndrome secondary to other confirmed genetic etiologies. Case Report: A 20-year-old female with concomitant Russell-Silver syndrome and myoclonus dystonia syndrome secondary to maternal uniparental disomy of chromosome 7 (mUPD7) presented for medically refractory symptoms. She underwent DBS surgery targeting the bilateral globus pallidus interna with positive effects that persisted 16 months post-procedure. Discussion: We present a patient with the mUPD7 genotype for myoclonus dystonia syndrome who exhibited a similar, if not superior, response to DBS when compared to patients with other genotypes. Highlights: This report outlines the first described case of successful deep brain stimulation treatment for a rare genetic variant of myoclonus dystonia syndrome caused by uniparental disomy at chromosome 7. These findings may expand treatment options for patients with similar conditions.


Assuntos
Estimulação Encefálica Profunda , Distonia , Mioclonia , Síndrome de Silver-Russell , Feminino , Humanos , Adulto Jovem , Adulto , Síndrome de Silver-Russell/genética , Distonia/complicações , Distonia/genética , Distonia/terapia , Dissomia Uniparental , Mioclonia/complicações , Mioclonia/genética , Mioclonia/terapia , Estimulação Encefálica Profunda/métodos
14.
Biochem Soc Trans ; 51(5): 1935-1946, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37767563

RESUMO

Approximately 15% of human cancers depend on the alternative lengthening of telomeres (ALT) pathway to maintain telomeres and proliferate. Telomeres that are elongated using ALT display unique features raising the exciting prospect of tailored cancer therapies. ALT-mediated telomere elongation shares several features with recombination-based DNA repair. Strikingly, cells that use the ALT pathway display abnormal levels of replication stress at telomeres and accumulate abundant extrachromosomal telomeric DNA. In this review, we examine recent findings that shed light on the ALT mechanisms and the strategies currently available to suppress this telomere elongation mechanism.


Assuntos
Homeostase do Telômero , Telômero , Humanos , Recombinação Genética
15.
Sci Rep ; 13(1): 14683, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37674004

RESUMO

Previous studies have documented natural infections of SARS-CoV-2 in various domestic and wild animals. More recently, studies have been published noting the susceptibility of members of the Cervidae family, and infections in both wild and captive cervid populations. In this study, we investigated the presence of SARS-CoV-2 in mammalian wildlife within the state of Vermont. 739 nasal or throat samples were collected from wildlife throughout the state during the 2021 and 2022 harvest season. Data was collected from red and gray foxes (Vulpes vulples and Urocyon cineroargentus, respectively), fishers (Martes pennati), river otters (Lutra canadensis), coyotes (Canis lantrans), bobcats (Lynx rufus rufus), black bears (Ursus americanus), and white-tailed deer (Odocoileus virginianus). Samples were tested for the presence of SARS-CoV-2 via quantitative RT-qPCR using the CDC N1/N2 primer set and/or the WHO-E gene primer set. Surprisingly, we initially detected a number of N1 and/or N2 positive samples with high cycle threshold values, though after conducting environmental swabbing of the laboratory and verifying with a second independent primer set (WHO-E) and PCR without reverse transcriptase, we showed that these were false positives due to plasmid contamination from a construct expressing the N gene in the general laboratory environment. Our final results indicate that no sampled wildlife were positive for SARS-CoV-2 RNA, and highlight the importance of physically separate locations for the processing of samples for surveillance and experiments that require the use of plasmid DNA containing the target RNA sequence. These negative findings are surprising, given that most published North America studies have found SARS-CoV-2 within their deer populations. The absence of SARS-CoV-2 RNA in populations sampled here may provide insights in to the various environmental and anthropogenic factors that reduce spillover and spread in North American's wildlife populations.


Assuntos
COVID-19 , Coiotes , Cervos , Lynx , Lontras , Animais , Animais Selvagens , COVID-19/epidemiologia , RNA Viral/genética , SARS-CoV-2/genética , Vermont/epidemiologia , Raposas
16.
JBJS Rev ; 11(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37535763

RESUMO

¼ Overall evidence for the treatment of an anterior cruciate ligament (ACL) injury in a pediatric or skeletally immature patient remains lows.¼ An ACL reconstruction is recommended with concomitant repairable chondral and meniscus injury or with symptoms of persistent instability despite high-quality rehabilitation.¼ Treatment decision for pediatric ACL reconstruction should use a shared decision-making model weighing the risks and benefits of both a nonoperative vs. surgical treatment.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Traumatismos do Joelho , Lesões do Menisco Tibial , Humanos , Criança , Lesões do Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior/complicações , Traumatismos do Joelho/cirurgia , Traumatismos do Joelho/diagnóstico , Lesões do Menisco Tibial/cirurgia
17.
Nat Aging ; 3(7): 796-812, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37277641

RESUMO

Mitochondrial dysfunction is linked to age-associated inflammation or inflammaging, but underlying mechanisms are not understood. Analyses of 700 human blood transcriptomes revealed clear signs of age-associated low-grade inflammation. Among changes in mitochondrial components, we found that the expression of mitochondrial calcium uniporter (MCU) and its regulatory subunit MICU1, genes central to mitochondrial Ca2+ (mCa2+) signaling, correlated inversely with age. Indeed, mCa2+ uptake capacity of mouse macrophages decreased significantly with age. We show that in both human and mouse macrophages, reduced mCa2+ uptake amplifies cytosolic Ca2+ oscillations and potentiates downstream nuclear factor kappa B activation, which is central to inflammation. Our findings pinpoint the mitochondrial calcium uniporter complex as a keystone molecular apparatus that links age-related changes in mitochondrial physiology to systemic macrophage-mediated age-associated inflammation. The findings raise the exciting possibility that restoring mCa2+ uptake capacity in tissue-resident macrophages may decrease inflammaging of specific organs and alleviate age-associated conditions such as neurodegenerative and cardiometabolic diseases.


Assuntos
Cálcio , Proteínas de Transporte da Membrana Mitocondrial , Camundongos , Animais , Humanos , Proteínas de Transporte da Membrana Mitocondrial/genética , Cálcio/metabolismo , Mitocôndrias/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Proteínas de Ligação ao Cálcio/genética
18.
J Strength Cond Res ; 37(12): 2362-2372, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37369084

RESUMO

ABSTRACT: Succi, PJ, Dinyer-McNeely, TK, Voskuil, CC, Abel, MG, Clasey, JL, and Bergstrom, HC. Responses to exercise at the critical heart rate vs. the power output associated with the critical heart rate. J Strength Cond Res 37(12): 2362-2372, 2023-This study examined the physiological (volume of oxygen consumption [V̇ o2 ], heart rate [HR], power output [PO], respiration rate [RR], muscle oxygen saturation [%SmO 2 ]), neuromuscular (electromyographic and mechanomyographic amplitude [EMG AMP and MMG AMP] and mean power frequency [EMG MPF and MMG MPF]), and perceptual (rating of perceived exertion [RPE]) responses during exercise anchored at the critical heart rate (CHR) vs. the PO associated with CHR (PCHR). Nine subjects (mean ± SD ; age = 26 ± 3 years) performed a graded exercise test and 4 constant PO trials to exhaustion at 85-100% of peak PO (PP) to derive CHR and PCHR on a cycle ergometer. Responses were recorded during trials at CHR (173 ± 9 b·min -1 , time to exhaustion [T Lim ] = 45.5 ± 20.2 minutes) and PCHR (198 ± 58 W, T Lim = 21.0 ± 17.8 minutes) and normalized to their respective values at PP in 10% intervals. There were significant ( p ≤ 0.05) mode (CHR vs. PCHR) × time (10%-100% T Lim ) interactions for all variables ( p < 0.001-0.036) except MMG AMP ( p > 0.05). Post hoc analyses indicated differences across time for CHR V̇ o2 (%change = -22 ± 16%), PCHR V̇ o2 (19 ± 5%), CHR RR (24 ± 23%), PCHR RR (45 ± 14%), CHR PO (-33 ± 11%), PCHR HR (22 ± 5%), CHR RPE (22 ± 14%), PCHR RPE (39 ± 6%), CHR %SmO 2 (41 ± 33%), PCHR %SmO 2 (-18 ± 40%), CHR EMG AMP (-13 ± 15%), PCHR EMG AMP (13 ± 13%), CHR EMG MPF (9 ± 8%), CHR MMG MPF (7 ± 11%), and PCHR MMG MPF (-3 ± 14%). The critical heart rate was more sustainable than PCHR but required adjustments in PO which traversed intensity domains and caused dissociations of the responses previously observed in exercise anchored to PO. These dissociations indicated the demands to exercise varied with anchoring scheme and provides an important consideration for practitioners prescribing endurance exercise.


Assuntos
Ergometria , Exercício Físico , Humanos , Adulto Jovem , Adulto , Frequência Cardíaca , Exercício Físico/fisiologia , Teste de Esforço , Músculo Esquelético/fisiologia , Eletromiografia
19.
Life (Basel) ; 13(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37374044

RESUMO

While fetal growth is dependent on many factors, optimal placental function is a prerequisite for a normal pregnancy outcome. The majority of fetal growth-restricted (FGR) pregnancies result from placental insufficiency (PI). The insulin-like growth factors (IGF1 and IGF2) stimulate fetal growth and placental development and function. Previously, we demonstrated that in vivo RNA interference (RNAi) of the placental hormone, chorionic somatomammotropin (CSH), resulted in two phenotypes. One phenotype exhibits significant placental and fetal growth restriction (PI-FGR), impaired placental nutrient transport, and significant reductions in umbilical insulin and IGF1. The other phenotype does not exhibit statistically significant changes in placental or fetal growth (non-FGR). It was our objective to further characterize these two phenotypes by determining the impact of CSH RNAi on the placental (maternal caruncle and fetal cotyledon) expression of the IGF axis. The trophectoderm of hatched blastocysts (9 days of gestation, dGA) were infected with a lentivirus expressing either a non-targeting sequence (NTS RNAi) control or CSH-specific shRNA (CSH RNAi) prior to embryo transfer into synchronized recipient ewes. At ≈125 dGA, pregnancies were fitted with vascular catheters to undergo steady-state metabolic studies. Nutrient uptakes were determined, and tissues were harvested at necropsy. In both CSH RNAi non-FGR and PI-FGR pregnancies, uterine blood flow was significantly reduced (p ≤ 0.05), while umbilical blood flow (p ≤ 0.01), both uterine and umbilical glucose and oxygen uptakes (p ≤ 0.05), and umbilical concentrations of insulin and IGF1 (p ≤ 0.05) were reduced in CSH RNAi PI-FGR pregnancies. Fetal cotyledon IGF1 mRNA concentration was reduced (p ≤ 0.05) in CSH RNAi PI-FGR pregnancies, whereas neither IGF1 nor IGF2 mRNA concentrations were impacted in the maternal caruncles, and either placental tissue in the non-FGR pregnancies. Fetal cotyledon IGF1R and IGF2R mRNA concentrations were not impacted for either phenotype, yet IGF2R was increased (p ≤ 0.01) in the maternal caruncles of CSH RNAi PI-FGR pregnancies. For the IGF binding proteins (IGFBP1, IGFBP2, IGFBP3), only IGFBP2 mRNA concentrations were impacted, with elevated IGFBP2 mRNA in both the fetal cotyledon (p ≤ 0.01) and maternal caruncle (p = 0.08) of CSH RNAi non-FGR pregnancies. These data support the importance of IGF1 in placental growth and function but may also implicate IGFBP2 in salvaging placental growth in non-FGR pregnancies.

20.
bioRxiv ; 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37162835

RESUMO

Previous studies have documented natural infections of SARS-CoV-2 in various domestic and wild animals. More recently, studies have been published noting the susceptibility of members of the Cervidae family, and infections in both wild and captive cervid populations. In this study, we investigated the presence of SARS-CoV-2 in mammalian wildlife within the state of Vermont. 739 nasal or throat samples were collected from wildlife throughout the state during the 2021 and 2022 harvest season. Data was collected from red and gray foxes ( Vulpes vulples and Urocyon cineroargentus , respectively), fishers ( Martes pennati ), river otters ( Lutra canadensis ), coyotes ( Canis lantrans ), bobcats ( Lynx rufus rufus ), black bears ( Ursus americanus ), and white-tailed deer ( Odocoileus virginianus ). Samples were tested for the presence of SARS-CoV-2 via quantitative RT-qPCR using the CDC N1/N2 primer set and/or the WHO-E gene primer set. Our results indicate that no sampled wildlife were positive for SARS-CoV-2. This finding is surprising, given that most published North America studies have found SARS-CoV-2 within their deer populations. The absence of SARS-CoV-2 RNA in populations sampled here may provide insights in to the various environmental and anthropogenic factors that reduce spillover and spread in North American's wildlife populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...