Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(10): e2309957121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422022

RESUMO

Hypoxia signaling influences tumor development through both cell-intrinsic and -extrinsic pathways. Inhibiting hypoxia-inducible factor (HIF) function has recently been approved as a cancer treatment strategy. Hence, it is important to understand how regulators of HIF may affect tumor growth under physiological conditions. Here we report that in aging mice factor-inhibiting HIF (FIH), one of the most studied negative regulators of HIF, is a haploinsufficient suppressor of spontaneous B cell lymphomas, particular pulmonary B cell lymphomas. FIH deficiency alters immune composition in aged mice and creates a tumor-supportive immune environment demonstrated in syngeneic mouse tumor models. Mechanistically, FIH-defective myeloid cells acquire tumor-supportive properties in response to signals secreted by cancer cells or produced in the tumor microenvironment with enhanced arginase expression and cytokine-directed migration. Together, these data demonstrate that under physiological conditions, FIH plays a key role in maintaining immune homeostasis and can suppress tumorigenesis through a cell-extrinsic pathway.


Assuntos
Linfoma de Células B , Proteínas Repressoras , Animais , Camundongos , Hipóxia/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas Repressoras/metabolismo , Microambiente Tumoral
2.
Acta Neuropathol ; 147(1): 7, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175261

RESUMO

Tau hyperphosphorylation and aggregation is a common feature of many dementia-causing neurodegenerative diseases. Tau can be phosphorylated at up to 85 different sites, and there is increasing interest in whether tau phosphorylation at specific epitopes, by specific kinases, plays an important role in disease progression. The AMP-activated protein kinase (AMPK)-related enzyme NUAK1 has been identified as a potential mediator of tau pathology, whereby NUAK1-mediated phosphorylation of tau at Ser356 prevents the degradation of tau by the proteasome, further exacerbating tau hyperphosphorylation and accumulation. This study provides a detailed characterisation of the association of p-tau Ser356 with progression of Alzheimer's disease pathology, identifying a Braak stage-dependent increase in p-tau Ser356 protein levels and an almost ubiquitous presence in neurofibrillary tangles. We also demonstrate, using sub-diffraction-limit resolution array tomography imaging, that p-tau Ser356 co-localises with synapses in AD postmortem brain tissue, increasing evidence that this form of tau may play important roles in AD progression. To assess the potential impacts of pharmacological NUAK inhibition in an ex vivo system that retains multiple cell types and brain-relevant neuronal architecture, we treated postnatal mouse organotypic brain slice cultures from wildtype or APP/PS1 littermates with the commercially available NUAK1/2 inhibitor WZ4003. Whilst there were no genotype-specific effects, we found that WZ4003 results in a culture-phase-dependent loss of total tau and p-tau Ser356, which corresponds with a reduction in neuronal and synaptic proteins. By contrast, application of WZ4003 to live human brain slice cultures results in a specific lowering of p-tau Ser356, alongside increased neuronal tubulin protein. This work identifies differential responses of postnatal mouse organotypic brain slice cultures and adult human brain slice cultures to NUAK1 inhibition that will be important to consider in future work developing tau-targeting therapeutics for human disease.


Assuntos
Doença de Alzheimer , Adulto , Humanos , Animais , Camundongos , Encéfalo , Anilidas , Emaranhados Neurofibrilares , Proteínas Quinases , Proteínas Repressoras
3.
PLoS Comput Biol ; 20(1): e1011793, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38232122

RESUMO

Electrophysiological recordings from freely behaving animals are a widespread and powerful mode of investigation in sleep research. These recordings generate large amounts of data that require sleep stage annotation (polysomnography), in which the data is parcellated according to three vigilance states: awake, rapid eye movement (REM) sleep, and non-REM (NREM) sleep. Manual and current computational annotation methods ignore intermediate states because the classification features become ambiguous, even though intermediate states contain important information regarding vigilance state dynamics. To address this problem, we have developed "Somnotate"-a probabilistic classifier based on a combination of linear discriminant analysis (LDA) with a hidden Markov model (HMM). First we demonstrate that Somnotate sets new standards in polysomnography, exhibiting annotation accuracies that exceed human experts on mouse electrophysiological data, remarkable robustness to errors in the training data, compatibility with different recording configurations, and an ability to maintain high accuracy during experimental interventions. However, the key feature of Somnotate is that it quantifies and reports the certainty of its annotations. We leverage this feature to reveal that many intermediate vigilance states cluster around state transitions, whereas others correspond to failed attempts to transition. This enables us to show for the first time that the success rates of different types of transition are differentially affected by experimental manipulations and can explain previously observed sleep patterns. Somnotate is open-source and has the potential to both facilitate the study of sleep stage transitions and offer new insights into the mechanisms underlying sleep-wake dynamics.


Assuntos
Fases do Sono , Vigília , Humanos , Camundongos , Animais , Vigília/fisiologia , Fases do Sono/fisiologia , Sono/fisiologia , Sono REM/fisiologia , Polissonografia/métodos , Eletroencefalografia/métodos
4.
Heliyon ; 9(6): e17362, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37389046

RESUMO

Whilst the regulation of chromatin accessibility and its effect on gene expression have been well studied in eukaryotic species, the role of chromatin dynamics and 3D organisation in genome reduced bacteria remains poorly understood [1,2]. In this study we profiled the accessibility of the Mycoplasma hyorhinis genome, these data were collected fortuitously as part of an experiment where ATAC-Seq was conducted on mycoplasma, contaminated mammalian cells. We found a differential and highly reproducible chromatin accessibility landscape, with regions of increased accessibility corresponding to genes important for the bacteria's life cycle and infectivity. Furthermore, accessibility in general correlated with transcriptionally active genes as profiled by RNA-Seq, but peaks of high accessibility were also seen in non-coding and intergenic regions, which could contribute to the topological organisation of the genome. However, changes in transcription induced by starvation or application of the RNA polymerase inhibitor rifampicin did not themselves change the accessibility profile, which confirms that the differential accessibility is inherently a property of the genome, and not a consequence of its function. These results together show that differential chromatin accessibility is a key feature of the regulation of gene expression in bacteria.

5.
Physiol Rev ; 103(3): 2231-2269, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36731029

RESUMO

Salt-inducible kinases (SIKs), which comprise a family of three homologous serine-threonine kinases, were first described for their role in sodium sensing but have since been shown to regulate multiple aspects of physiology. These kinases are activated or deactivated in response to extracellular signals that are cell surface receptor mediated and go on to phosphorylate multiple targets including the transcription cofactors CRTC1-3 and the class IIa histone deacetylases (HDACs). Thus, the SIK family conveys signals about the cellular environment to reprogram transcriptional and posttranscriptional processes in response. In this manner, SIKs have been shown to regulate metabolic responses to feeding/fasting, cell division and oncogenesis, inflammation, immune responses, and most recently, sleep and circadian rhythms. Sleep and circadian rhythms are master regulators of physiology and are exquisitely sensitive to regulation by environmental light and physiological signals such as the need for sleep. Salt-inducible kinases have been shown to be central to the molecular regulation of both these processes. Here, we summarize the molecular mechanisms by which SIKs control these different domains of physiology and highlight where there is mechanistic overlap with sleep/circadian rhythm control.


Assuntos
Proteínas Serina-Treonina Quinases , Fatores de Transcrição , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Cloreto de Sódio , Ritmo Circadiano , Sono
6.
iScience ; 26(2): 105877, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36590897

RESUMO

Sleep and circadian rhythm disruption (SCRD), as encountered during shift work, increases the risk of respiratory viral infection including SARS-CoV-2. However, the mechanism(s) underpinning higher rates of respiratory viral infection following SCRD remain poorly characterized. To address this, we investigated the effects of acute sleep deprivation on the mouse lung transcriptome. Here we show that sleep deprivation profoundly alters the transcriptional landscape of the lung, causing the suppression of both innate and adaptive immune systems, disrupting the circadian clock, and activating genes implicated in SARS-CoV-2 replication, thereby generating a lung environment that could promote viral infection and associated disease pathogenesis. Our study provides a mechanistic explanation of how SCRD increases the risk of respiratory viral infections including SARS-CoV-2 and highlights possible therapeutic avenues for the prevention and treatment of respiratory viral infection.

7.
Front Neurosci ; 17: 1303727, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38504908

RESUMO

Multiple studies have documented sex differences in sleep behaviour, however, the molecular determinants of such differences remain unknown. Furthermore, most studies addressing molecular mechanisms have been performed only in males, leaving the current state of knowledge biased towards the male sex. To address this, we studied the differences in the transcriptome of the cerebral cortex of male and female C57Bl/6 J mice after 6 h of sleep deprivation. We found that several genes, including the neurotrophin growth factor Bdnf, immediate early genes Fosb and Fosl2, and the adenylate cyclase Adcy7 are differentially upregulated in males compared to females. We identified the androgen-receptor activating transcription factor EZH2 as the upstream regulatory element specifying sex differences in the sleep deprivation transcriptome. We propose that the pathways downstream of these transcripts, which impact on cellular re-organisation, synaptic signalling, and learning may underpin the differential response to sleep deprivation in the two sexes.

8.
Front Physiol ; 13: 1085217, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605898

RESUMO

Circadian entrainment in mice relies primarily on photic cues that trigger the transcription of the core clock genes Period1/2 in the suprachiasmatic nucleus (SCN), thus aligning the phase of the clock with the dawn/dusk cycle. It has been shown previously that this pathway is directly regulated by adenosine signalling and that adenosine A2A/A1 receptor antagonists can both enhance photic entrainment and phase shift circadian rhythms of wheel-running behaviour in mice. In this study, we tested the ability of CT1500, a clinically safe adenosine A2A/A1 receptor antagonist to effect circadian entrainment. We show that CT1500 lengthens circadian period in SCN ex vivo preparations. Furthermore, we show in vivo that a single dose of CT1500 enhances re-entrainment to a shifted light dark cycle in a dose-dependent manner in mice and also phase shifts the circadian clock under constant dark with a clear time-of-day related pattern. The phase response curve shows CT1500 causes phase advances during the day and phase delays at dusk. Finally, we show that daily timed administration of CT1500 can entrain the circadian clock to a 24 h rhythm in free-running mice. Collectively, these data support the use of CT1500 in the treatment of disorders of circadian entrainment.

9.
Nat Commun ; 12(1): 2113, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33837202

RESUMO

The accumulation of adenosine is strongly correlated with the need for sleep and the detection of sleep pressure is antagonised by caffeine. Caffeine also affects the circadian timing system directly and independently of sleep physiology, but how caffeine mediates these effects upon the circadian clock is unclear. Here we identify an adenosine-based regulatory mechanism that allows sleep and circadian processes to interact for the optimisation of sleep/wake timing in mice. Adenosine encodes sleep history and this signal modulates circadian entrainment by light. Pharmacological and genetic approaches demonstrate that adenosine acts upon the circadian clockwork via adenosine A1/A2A receptor signalling through the activation of the Ca2+ -ERK-AP-1 and CREB/CRTC1-CRE pathways to regulate the clock genes Per1 and Per2. We show that these signalling pathways converge upon and inhibit the same pathways activated by light. Thus, circadian entrainment by light is systematically modulated on a daily basis by sleep history. These findings contribute to our understanding of how adenosine integrates signalling from both light and sleep to regulate circadian timing in mice.


Assuntos
Adenosina/metabolismo , Transtornos Cronobiológicos/fisiopatologia , Relógios Circadianos/efeitos dos fármacos , Sono/fisiologia , Animais , Encéfalo/patologia , Cafeína/farmacologia , Linhagem Celular Tumoral , Transtornos Cronobiológicos/tratamento farmacológico , Transtornos Cronobiológicos/etiologia , Transtornos Cronobiológicos/patologia , Relógios Circadianos/fisiologia , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Modelos Animais de Doenças , Humanos , Luz , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Fotoperíodo , Quinazolinas/administração & dosagem , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos da radiação , Sono/efeitos dos fármacos , Privação do Sono/complicações , Triazóis/administração & dosagem
10.
J Pediatr Urol ; 16(4): 500-501, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32669216

RESUMO

In children, removal of a post-procedural JJ stent requires a further cystoscopy under general anaesthetic. We describe securing the distal end of the ureteric stent to the tip of a balloon catheter at the end of the primary procedure. Once post-operative oedema has subsided, the stent is removed seamlessly in tandem with the balloon catheter. This can be done on the ward by nursing staff without the need for general anaesthesia or sedation. Our experience in the first 10 successive patients (aged 1.6-16.3 years) demonstrates this technique to be safe, easy to learn and well tolerated.


Assuntos
Ureter , Criança , Cistoscopia , Remoção de Dispositivo , Humanos , Masculino , Stents , Ureter/cirurgia , Cateteres Urinários
11.
FASEB J ; 33(5): 6154-6167, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30799631

RESUMO

Cannabinoid receptor (CB)2 is an immune cell-localized GPCR that has been hypothesized to regulate the magnitude of inflammatory responses. However, there is currently no consensus as to the mechanism by which CB2 mediates its anti-inflammatory effects in vivo. To address this question, we employed a murine dorsal air pouch model with wild-type and CB2-/- 8-12-wk-old female and male C57BL/6 mice and found that acute neutrophil and lymphocyte antigen 6 complex, locus Chi monocyte recruitment in response to Zymosan was significantly enhanced in CB2-/- mice. Additionally, levels of matrix metalloproteinase 9 and the chemokines C-C motif chemokine ligand (CCL)2, CCL4, and C-X-C motif chemokine ligand 10 in CB2-/- pouch exudates were elevated at earlier time points. Importantly, using mixed bone marrow chimeras, we revealed that the proinflammatory phenotype in CB2-/- mice is neutrophil-intrinsic rather than stromal cell-dependent. Indeed, neutrophils isolated from CB2-/- mice exhibited an enhanced migration-related transcriptional profile and increased adhesive phenotype, and treatment of human neutrophils with a CB2 agonist blocked their endothelial transmigration. Overall, we have demonstrated that CB2 plays a nonredundant role during acute neutrophil mobilization to sites of inflammation and, as such, it could represent a therapeutic target for the development of novel anti-inflammatory compounds to treat inflammatory human diseases.-Kapellos, T. S., Taylor, L., Feuerborn, A., Valaris, S., Hussain, M. T., Rainger, G. E., Greaves, D. R., Iqbal, A. J. Cannabinoid receptor 2 deficiency exacerbates inflammation and neutrophil recruitment.


Assuntos
Movimento Celular , Neutrófilos/imunologia , Receptor CB2 de Canabinoide/deficiência , Transcriptoma , Animais , Adesão Celular , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL4/genética , Quimiocina CCL4/metabolismo , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Feminino , Humanos , Imunidade Inata , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/fisiologia , Receptor CB2 de Canabinoide/genética
12.
Methods Mol Biol ; 1784: 197-214, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29761401

RESUMO

The timely recruitment of innate and adaptive immune cells to sites of inflammation and repair is essential for host defense against pathogens and repair of damaged tissues. The development of bioassays such as in vitro chemotaxis assays played an important role in the original purification of chemoattractant cytokines including interleukin-1 and the CC and CXC chemokines. The earliest chemotaxis methods were based on the principle of the Boyden chamber, first described in 1962. In this chapter we give detailed protocols for more recent techniques that allow determination of macrophage chemotaxis in real time. These techniques have given new insights into the regulation of macrophage responses to chemotaxis in vitro and in vivo.


Assuntos
Bioensaio/métodos , Movimento Celular/genética , Quimiotaxia/genética , Macrófagos/imunologia , Imunidade Adaptativa/genética , Movimento Celular/imunologia , Quimiocinas CC/genética , Quimiocinas CXC/genética , Fatores Quimiotáticos/genética , Quimiotaxia/imunologia , Humanos , Imunidade Inata/genética , Inflamação/imunologia , Inflamação/patologia , Interleucina-1/genética , Macrófagos/metabolismo
13.
Front Immunol ; 8: 1621, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29209334

RESUMO

Chemerin is a chemotactic protein that induces migration of several immune cells including macrophages, immature dendritic cells, and NK cells. Chemerin binds to three G protein-coupled receptors (GPCRs), including CCRL2. The exact function of CCRL2 remains unclear. CCRL2 expression is rapidly upregulated during inflammation, but it lacks the intracellular DRYLAIV motif required for classical GPCR downstream signalling pathways, and it has not been reported to internalise chemerin upon binding. The aim of this study was to investigate what role if any CCRL2 plays during acute inflammation. Using the zymosan- and thioglycollate-induced murine models of acute inflammation, we report that mice deficient in the Ccrl2 gene display exaggerated local and systemic inflammatory responses, characterised by increased myeloid cell recruitment. This amplified myeloid cell recruitment was associated with increased chemerin and CXCL1 levels. Furthermore, we report that the inflammatory phenotype observed in these mice is dependent upon elevated levels of endogenous chemerin. Antibody neutralisation of chemerin activity in Ccrl2-/- mice abrogated the amplified inflammatory responses. Importantly, chemerin did not directly recruit myeloid cells but rather increased the production of other chemotactic proteins such as CXCL1. Administration of recombinant chemerin to wild-type mice before inflammatory challenge recapitulated the increased myeloid cell recruitment and inflammatory mediator production observed in Ccrl2-/- mice. We have demonstrated that the absence of CCRL2 results in increased levels of local and systemic chemerin levels and exacerbated inflammatory responses during acute inflammatory challenge. These results further highlight the importance of chemerin as a therapeutic target in inflammatory diseases.

14.
Hum Mol Genet ; 26(R2): R128-R138, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28977444

RESUMO

Circadian rhythms are 24-h rhythms in physiology and behaviour generated by molecular clocks, which serve to coordinate internal time with the external world. The circadian system is a master regulator of nearly all physiology and its disruption has major consequences on health. Sleep and circadian rhythm disruption (SCRD) is a ubiquitous feature in today's 24/7 society, and studies on shift-workers have shown that SCRD can lead not only to cognitive impairment, but also metabolic syndrome and psychiatric illness including depression (1,2). Mouse models of clock mutants recapitulate these deficits, implicating mechanistic and causal links between SCRD and disease pathophysiology (3-5). Importantly, treating clock disruption reverses and attenuates these adverse health states in animal models (6,7), thus establishing the circadian system as a novel therapeutic target. Significantly, circadian and clock-controlled gene mutations have recently been identified by Genome-Wide Association Studies (GWAS) in the aetiology of sleep, mental health and metabolic disorders. This review will focus upon the genetics of circadian rhythms in sleep and health.


Assuntos
Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Sono/genética , Animais , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Depressão/genética , Humanos , Transtornos Mentais/genética , Transtornos Mentais/fisiopatologia , Camundongos , Modelos Animais , Sono/fisiologia
15.
Nucleic Acids Res ; 45(17): 9860-9873, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28973476

RESUMO

The master circadian pacemaker in mammals is located in the suprachiasmatic nuclei (SCN) which regulate physiology and behaviour, as well as coordinating peripheral clocks throughout the body. Investigating the function of the SCN has often focused on the identification of rhythmically expressed genes. However, not all genes critical for SCN function are rhythmically expressed. An alternative strategy is to characterize those genes that are selectively enriched in the SCN. Here, we examined the transcriptome of the SCN and whole brain (WB) of mice using meta-analysis of publicly deposited data across a range of microarray platforms and RNA-Seq data. A total of 79 microarrays were used (24 SCN and 55 WB samples, 4 different microarray platforms), alongside 17 RNA-Seq data files (7 SCN and 10 WB). 31 684 MGI gene symbols had data for at least one platform. Meta-analysis using a random effects model for weighting individual effect sizes (derived from differential expression between relevant SCN and WB samples) reliably detected known SCN markers. SCN-enriched transcripts identified in this study provide novel insights into SCN function, including identifying genes which may play key roles in SCN physiology or provide SCN-specific drivers.


Assuntos
Relógios Circadianos/genética , Ritmo Circadiano/genética , Redes Reguladoras de Genes , Núcleo Supraquiasmático/fisiologia , Transcriptoma , Animais , Química Encefálica , Mineração de Dados , Conjuntos de Dados como Assunto , Ontologia Genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Anotação de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de RNA
16.
Clin Teach ; 14(6): 427-431, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28401705

RESUMO

BACKGROUND: Performing eye examinations is an important clinical skill that medical students often find difficult to become proficient in. This paper describes the development and evaluation of an innovative 3D virtual reality (VR) training application to support learning these skills. METHODS: The VR ophthalmoscope was developed by a clinical team and technologist using the unity game engine, smartphone and virtual reality headset. It has a series of tasks that include performing systematic eye examinations, identifying common eye pathologies and a knowledge quiz. As part of their clinical training, 15 fourth-year medical students were surveyed for their views on this teaching approach. The Technology Acceptance Model was used to evaluate perceived usefulness and ease of use. Data were also collected on the usability of the app, together with the students' written comments about it. RESULTS: Users agreed that the teaching approach improved their understanding of ophthalmoscopy (n = 14), their ability to identify landmarks in the eye (n = 14) and their ability to recognise abnormalities (n = 15). They found the app easy to use (n = 15), the teaching approach informative (n = 13) and that it would increase students' confidence when performing these tasks in future (n = 15). Performing eye examinations is an important clinical skill DISCUSSION: The evaluation showed that a VR app can successfully simulate the processes involved in performing eye examinations. The app was highly rated for all elements of perceived usefulness, ease of use and usability. Medical students stated that they would like to be taught other medical skills in this way in future.


Assuntos
Oftalmoscopia , Realidade Virtual , Competência Clínica , Humanos , Imageamento Tridimensional , Oftalmologia/educação
17.
Arterioscler Thromb Vasc Biol ; 37(2): 258-263, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27908893

RESUMO

OBJECTIVE: To create a model of atherosclerosis using green fluorescent protein (GFP)-targeted monocytes/macrophages, allowing analysis of both endogenous GFP+ and adoptively transferred GFP+ myeloid cells in arterial inflammation. APPROACH AND RESULTS: hCD68GFP reporter mice were crossed with ApoE-/- mice. Expression of GFP was localized to macrophages in atherosclerotic plaques and in angiotensin II-induced aortic aneurysms and correlated with galectin 3 and mCD68 expression. Flow cytometry confirmed GFP+ expression in CD11b+/CD64+, CD11c+/MHC-IIHI, and CD11b+/F4/80+ myeloid cells. Adoptive transfer of GFP+ monocytes demonstrated monocyte recruitment to both adventitia and atherosclerotic plaque, throughout the aortic root, within 72 hours. We demonstrated the biological utility of hCD68GFP monocytes by comparing the recruitment of wild-type and CCR2-/- monocytes to sites of inflammation. CONCLUSIONS: hCD68GFP/ApoE-/- mice provide a new approach to study macrophage accumulation in atherosclerotic plaque progression and to identify cells recruited from adoptively transferred monocytes.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Aorta/metabolismo , Doenças da Aorta/metabolismo , Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Placa Aterosclerótica , Transferência Adotiva , Angiotensina II , Animais , Antígenos CD/genética , Antígenos de Diferenciação/metabolismo , Antígenos de Diferenciação Mielomonocítica/genética , Aorta/patologia , Aneurisma Aórtico/induzido quimicamente , Aneurisma Aórtico/genética , Aneurisma Aórtico/metabolismo , Aneurisma Aórtico/patologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/patologia , Antígeno CD11b/metabolismo , Antígeno CD11c/metabolismo , Rastreamento de Células/métodos , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Galectina 3/metabolismo , Predisposição Genética para Doença , Proteínas de Fluorescência Verde/genética , Macrófagos/patologia , Macrófagos/transplante , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Monócitos/patologia , Monócitos/transplante , Fenótipo , Receptores de IgG/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais
18.
Elife ; 52016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27572261

RESUMO

Apolipoprotein A1 (apoA1) is the major protein component of high-density lipoprotein (HDL) and has well documented anti-inflammatory properties. To better understand the cellular and molecular basis of the anti-inflammatory actions of apoA1, we explored the effect of acute human apoA1 exposure on the migratory capacity of monocyte-derived cells in vitro and in vivo. Acute (20-60 min) apoA1 treatment induced a substantial (50-90%) reduction in macrophage chemotaxis to a range of chemoattractants. This acute treatment was anti-inflammatory in vivo as shown by pre-treatment of monocytes prior to adoptive transfer into an on-going murine peritonitis model. We find that apoA1 rapidly disrupts membrane lipid rafts, and as a consequence, dampens the PI3K/Akt signalling pathway that coordinates reorganization of the actin cytoskeleton and cell migration. Our data strengthen the evidence base for therapeutic apoA1 infusions in situations where reduced monocyte recruitment to sites of inflammation could have beneficial outcomes.


Assuntos
Apolipoproteína A-I/metabolismo , Quimiotaxia/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Peritonite/patologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
19.
PLoS One ; 11(8): e0160685, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27509208

RESUMO

Netrin-1, acting at its cognate receptor UNC5b, has been previously demonstrated to inhibit CC chemokine-induced immune cell migration. In line with this, we found that netrin-1 was able to inhibit CCL2-induced migration of bone marrow derived macrophages (BMDMs). However, whether netrin-1 is capable of inhibiting chemotaxis to a broader range of chemoattractants remains largely unexplored. As our initial experiments demonstrated that RAW264.7 and BMDMs expressed high levels of C5a receptor 1 (C5aR1) on their surface, we aimed to determine the effect of netrin-1 exposure on monocyte/macrophage cell migration induced by C5a, a complement peptide that plays a major role in multiple inflammatory pathologies. Treatment of RAW264.7 macrophages, BMDMs and human monocytes with netrin-1 inhibited their chemotaxis towards C5a, as measured using two different real-time methods. This inhibitory effect was found to be dependent on netrin-1 receptor signalling, as an UNC5b blocking antibody was able to reverse netrin-1 inhibition of C5a induced BMDM migration. Treatment of BMDMs with netrin-1 had no effect on C5aR1 proximal signalling events, as surface C5aR1 expression, internalisation and intracellular Ca2+ release following C5aR1 ligation remained unaffected after netrin-1 exposure. We next examined receptor distal events that occur following C5aR1 activation, but found that netrin-1 was unable to inhibit C5a induced phosphorylation of ERK1/2, Akt and p38, pathways important for cellular migration. Furthermore, netrin-1 treatment had no effect on BMDM cytoskeletal rearrangement following C5a stimulation as determined by microscopy and real-time electrical impedance sensing. Taken together these data highlight that netrin-1 inhibits monocyte and macrophage cell migration, but that the mechanism behind this effect remains unresolved. Nevertheless, netrin-1 and its cognate receptors warrant further investigation as they may represent a potential avenue for the development of novel anti-inflammatory therapeutics.


Assuntos
Quimiotaxia/fisiologia , Complemento C5a/metabolismo , Macrófagos/fisiologia , Fatores de Crescimento Neural/farmacologia , Proteínas Supressoras de Tumor/farmacologia , Animais , Cálcio/metabolismo , Linhagem Celular , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiotaxia/efeitos dos fármacos , Humanos , Fatores Imunológicos/farmacologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/fisiologia , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/metabolismo , Netrina-1 , Fosfatidilinositol 3-Quinases/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo
20.
Biochem Pharmacol ; 116: 107-19, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27475716

RESUMO

Phagocytosis of pathogens, apoptotic cells and debris is a key feature of macrophage function in host defense and tissue homeostasis. Quantification of macrophage phagocytosis in vitro has traditionally been technically challenging. Here we report the optimization and validation of the IncuCyte ZOOM® real time imaging platform for macrophage phagocytosis based on pHrodo® pathogen bioparticles, which only fluoresce when localized in the acidic environment of the phagolysosome. Image analysis and fluorescence quantification were performed with the automated IncuCyte™ Basic Software. Titration of the bioparticle number showed that the system is more sensitive than a spectrofluorometer, as it can detect phagocytosis when using 20× less E. coli bioparticles. We exemplified the power of this real time imaging platform by studying phagocytosis of murine alveolar, bone marrow and peritoneal macrophages. We further demonstrate the ability of this platform to study modulation of the phagocytic process, as pharmacological inhibitors of phagocytosis suppressed bioparticle uptake in a concentration-dependent manner, whereas opsonins augmented phagocytosis. We also investigated the effects of macrophage polarization on E. coli phagocytosis. Bone marrow-derived macrophage (BMDM) priming with M2 stimuli, such as IL-4 and IL-10 resulted in higher engulfment of bioparticles in comparison with M1 polarization. Moreover, we demonstrated that tolerization of BMDMs with lipopolysaccharide (LPS) results in impaired E. coli bioparticle phagocytosis. This novel real time assay will enable researchers to quantify macrophage phagocytosis with a higher degree of accuracy and sensitivity and will allow investigation of limited populations of primary phagocytes in vitro.


Assuntos
Macrófagos/citologia , Fagocitose , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Linhagem Celular , Micropartículas Derivadas de Células/imunologia , Micropartículas Derivadas de Células/fisiologia , Células Cultivadas , Endotoxinas/farmacologia , Escherichia coli/imunologia , Escherichia coli/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/imunologia , Interleucinas/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos Alveolares/citologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Proteínas Opsonizantes/farmacologia , Fagocitose/efeitos dos fármacos , Células RAW 264.7 , Staphylococcus aureus/imunologia , Staphylococcus aureus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...