Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Rev ; 123(9): 6359-6411, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36459432

RESUMO

The direct transformation of methane to methanol remains a significant challenge for operation at a larger scale. Central to this challenge is the low reactivity of methane at conditions that can facilitate product recovery. This review discusses the issue through examination of several promising routes to methanol and an evaluation of performance targets that are required to develop the process at scale. We explore the methods currently used, the emergence of active heterogeneous catalysts and their design and reaction mechanisms and provide a critical perspective on future operation. Initial experiments are discussed where identification of gas phase radical chemistry limited further development by this approach. Subsequently, a new class of catalytic materials based on natural systems such as iron or copper containing zeolites were explored at milder conditions. The key issues of these technologies are low methane conversion and often significant overoxidation of products. Despite this, interest remains high in this reaction and the wider appeal of an effective route to key products from C-H activation, particularly with the need to transition to net carbon zero with new routes from renewable methane sources is exciting.

2.
Faraday Discuss ; 242(0): 193-211, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36189732

RESUMO

A number of Pd based materials have been synthesised and evaluated as catalysts for the conversion of carbon dioxide and hydrogen to methanol, a useful platform chemical and hydrogen storage molecule. Monometallic Pd catalysts show poor methanol selectivity, but this is improved through the formation of Pd alloys, with both PdZn and PdGa alloys showing greatly enhanced methanol productivity compared with monometallic Pd/Al2O3 and Pd/TiO2 catalysts. Catalyst characterisation shows that the 1 : 1 ß-PdZn alloy is present in all Zn containing post-reaction samples, including PdZn/Ga2O3, with the Pd2Ga alloy formed for the Pd/Ga2O3 sample. The heat of mixing was calculated for a variety of alloy compositions with high values determined for both PdZn and Pd2Ga alloys, at ca. -0.6 eV per atom and ca. -0.8 eV per atom, respectively. However, ZnO is more readily reduced than Ga2O3, providing a possible explanation for the preferential formation of the PdZn alloy, rather than PdGa, when in the presence of Ga2O3.

3.
Angew Chem Int Ed Engl ; 61(50): e202209016, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36351240

RESUMO

Catalysis is involved in around 85 % of manufacturing industry and contributes an estimated 25 % to the global domestic product, with the majority of the processes relying on heterogeneous catalysis. Despite the importance in different global segments, the fundamental understanding of heterogeneously catalysed processes lags substantially behind that achieved in other fields. The newly established Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis (FUNCAT) targets innovative concepts that could contribute to the scientific developments needed in the research field to achieve net zero greenhouse gas emissions in the chemical industries. This Viewpoint Article presents some of our research activities and visions on the current and future challenges of heterogeneous catalysis regarding green industry and the circular economy by focusing explicitly on critical processes. Namely, hydrogen production, ammonia synthesis, and carbon dioxide reduction, along with new aspects of acetylene chemistry.

4.
Front Chem ; 10: 959152, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212075

RESUMO

A simple hydrothermal synthesis of CeO2 was implemented to obtain a series of CeO2-supported gold (Au) catalysts, used for the total oxidation of propene/toluene/CO gas mixtures and the oxidation of CO. CeO2 preparation started from a cerium hydrogen carbonate precursor using a range of different hydrothermal temperatures (HT) from 120 to 180°C. High-resolution transmission electron microscopy, X-ray diffraction, and H2-temperature-programmed reduction data indicated that CeO2 morphology varied with the HT, and was composed of the more active (200) surface. Following Au deposition onto the CeO2 support, this active crystal plane resulted in the most widely dispersed Au nanoparticles on the CeO2 support. The catalytic performance of the CeO2-supported Au catalysts for both oxidation reactions improved as the reducibility increased to generate lattice oxygen vacancies and the number of adsorbed peroxide species on the CeO2 support increased due to addition of Au. The Au catalyst on the CeO2 support prepared at 120°C was the most active in both propene/toluene/CO oxidation and independent CO oxidation.

5.
Chem Rev ; 122(6): 6795-6849, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35263103

RESUMO

The development and application of trimetallic nanoparticles continues to accelerate rapidly as a result of advances in materials design, synthetic control, and reaction characterization. Following the technological successes of multicomponent materials in automotive exhausts and photovoltaics, synergistic effects are now accessible through the careful preparation of multielement particles, presenting exciting opportunities in the field of catalysis. In this review, we explore the methods currently used in the design, synthesis, analysis, and application of trimetallic nanoparticles across both the experimental and computational realms and provide a critical perspective on the emergent field of trimetallic nanocatalysts. Trimetallic nanoparticles are typically supported on high-surface-area metal oxides for catalytic applications, synthesized via preparative conditions that are comparable to those applied for mono- and bimetallic nanoparticles. However, controlled elemental segregation and subsequent characterization remain challenging because of the heterogeneous nature of the systems. The multielement composition exhibits beneficial synergy for important oxidation, dehydrogenation, and hydrogenation reactions; in some cases, this is realized through higher selectivity, while activity improvements are also observed. However, challenges related to identifying and harnessing influential characteristics for maximum productivity remain. Computation provides support for the experimental endeavors, for example in electrocatalysis, and a clear need is identified for the marriage of simulation, with respect to both combinatorial element screening and optimal reaction design, to experiment in order to maximize productivity from this nascent field. Clear challenges remain with respect to identifying, making, and applying trimetallic catalysts efficiently, but the foundations are now visible, and the outlook is strong for this exciting chemical field.


Assuntos
Nanopartículas , Catálise , Hidrogenação , Nanopartículas/química , Oxirredução , Óxidos
6.
Materials (Basel) ; 14(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34885272

RESUMO

In the present work, a simple soft chemistry method was employed to prepare cobalt mixed oxide (Co3O4) materials, which have shown remarkably high activity in the heterogeneously catalyzed total oxidation of low reactive VOCs such as the light alkanes propane, ethane, and methane. The optimal heat-treatment temperature of the catalysts was shown to depend on the reactivity of the alkane studied. The catalytic activity of the Co3O4 catalysts was found to be as high as that of the most effective catalysts based on noble metals. The physicochemical properties, from either the bulk (using XRD, TPR, TPD-O2, and TEM) or the surface (using XPS), of the catalysts were investigated to correlate the properties with the catalytic performance in the total oxidation of VOCs. The presence of S1 low-coordinated oxygen species at the near surface of the Co3O4-based catalysts appeared to be linked with the higher reducibility of the catalysts and, consequently, with the higher catalytic activity, not only per mass of catalyst but also per surface area (enhanced areal rate). The co-presence of propane and methane in the feed at low reaction temperatures did not negatively affect the propane reactivity. However, the co-presence of propane and methane in the feed at higher reaction temperatures negatively affected the methane reactivity.

7.
ACS Catal ; 11(8): 4893-4907, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-34055453

RESUMO

Glycerol solutions were vaporized and reacted over ceria catalysts with different morphologies to investigate the relationship of product distribution to the surface facets exposed, particularly, the yield of bio-renewable methanol. Ceria was prepared with cubic, rodlike, and polyhedral morphologies via hydrothermal synthesis by altering the concentration of the precipitating agent or synthesis temperature. Glycerol conversion was found to be low over the ceria with a cubic morphology, and this was ascribed to both a low surface area and relatively high acidity. Density functional theory calculations also showed that the (100) surface is likely to be hydroxylated under reaction conditions which could limit the availability of basic sites. Methanol space-time-yields over the polyhedral ceria samples were more than four times that for the cubic material at 400 °C, where 201 g of methanol was produced per hour per kilogram of the catalyst. Under comparable glycerol conversions, we show that the rodlike and polyhedral catalysts produce a major intermediate to methanol, hydroxyacetone (HA), with a selectivity of ca. 45%, but that over the cubic sample, this was found to be 15%. This equates to a 13-fold increase in the space-time-yield of HA over the polyhedral samples compared to the cubes at 320 °C. The implications of this difference are discussed with respect to the reaction mechanism, suggesting that a different mechanism dominates over the cubic catalysts to that for rodlike and polyhedral catalysts. The strong association between exposed surface facets of ceria to high methanol yields is an important consideration for future catalyst design in this area.

8.
Acc Chem Res ; 54(11): 2614-2623, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34008962

RESUMO

Methane represents one of the most abundant carbon sources for fuel or chemical production. However, remote geographical locations and high transportation costs result in a substantial proportion being flared at the source. The selective oxidation of methane to methanol remains a grand challenge for catalytic chemistry due to the large energy barrier for the initial C-H activation and prevention of overoxidation to CO2. Indirect methods such as steam reforming produce CO and H2 chemical building blocks, but they consume large amounts of energy over multistage processes. This makes the development of the low-temperature selective oxidation of methane to methanol highly desirable and explains why it has remained an active area of research over the last 50 years.The thermodynamically favorable oxidation of methane to methanol would ideally use only molecular oxygen. Nature effects this transformation with the enzyme methane monooxygenase (MMO) in aqueous solution at ambient temperature with the addition of 2 equiv of a reducing cofactor. MMO active sites are Fe and Cu oxoclusters, and the incorporation of these metals into zeolitic frameworks can result in biomimetic activity. Most approaches to methane oxidation using metal-doped zeolites use high temperature with oxygen or N2O; however, demonstrations of catalytic cycles without catalyst regeneration cycles are limited. Over the last 10 years, we have developed Fe-Cu-ZSM-5 materials for the selective oxidation of methane to methanol under aqueous conditions at 50 °C using H2O2 as an oxidant (effectively O2 + 2 reducing equiv), which compete with MMO in terms of activity. To date, these materials are among the most active and selective catalysts for methane oxidation under this mild condition, but industrially, H2O2 is an expensive oxidant to use in the production of methanol.This observation of activity under mild conditions led to new approaches to utilize O2 as the oxidant. Supported precious metal nanoparticles have been shown to be active for a range of C-H activation reactions using O2 and H2O2, but the rapid decomposition of H2O2 over metal surfaces limits efficiency. We identified that this decomposition could be minimized by removing the support material and carrying out the reaction with colloidal AuPd nanoparticles. The efficiency of methanol production with H2O2 consumption was increased by 4 orders of magnitude, and crucially it was demonstrated for the first time that molecular O2 could be incorporated into the methanol produced with 91% selectivity. The understanding gained from these two approaches provides valuable insight into possible new routes to selective methane oxidation which will be presented here in the context of our own research in this area.

9.
Faraday Discuss ; 229: 108-130, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33650598

RESUMO

The production of methanol from glycerol over a basic oxide, such as MgO, using high reaction temperatures (320 °C) is a promising new approach to improving atom efficiency in the production of biofuels. The mechanism of this reaction involves the homolytic cleavage of the C3 feedstock, or its dehydration product hydroxyacetone, to produce a hydroxymethyl radical species which can then abstract an H atom from other species. Obtaining a detailed reaction mechanism for this type of chemistry is difficult due to the large number of products present when the system is operated at high conversions. In this contribution we show how DFT based modelling studies can provide new insights into likely reaction pathways, in particular the source of H atoms for the final step of converting hydroxymethyl radicals to methanol. We show that water is unlikely to be important in this stage of the process, C-H bonds of C2 and C3 species can give an energetically favourable pathway and that the disproportionation of hydroxymethyl radicals to methanol and formaldehyde produces a very favourable route. Experimental analysis of reaction products confirms the presence of formaldehyde. The calculations presented in this work also provide new insight into the role of the catalyst surface in the reaction showing that the base sites of the MgO(100) are able to deprotonate hydroxymethyl radicals but not methanol itself. In carrying out the calculations we also show how periodic DFT and QM/MM approaches can be used together to obtain a rounded picture of molecular adsorption to surfaces and homolytic bond cleavage which are both central to the reactions studied.

10.
Philos Trans A Math Phys Eng Sci ; 378(2176): 20200059, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32623995

RESUMO

A series of ceria-based solid solution metal oxides were prepared by co-precipitation and evaluated as catalysts for glycerol cleavage, principally to methanol. The catalyst activity and selectivity to methanol were investigated with respect to the reducibility of the catalysts. Oxides comprising Ce-Pr and Ce-Zr were prepared, calcined and compared to CeO2, Pr6O11 and ZrO2. The oxygen storage capacity of the catalysts was examined with analysis of Raman spectroscopic measurements and a temperature programmed reduction, oxidation and reduction cycle. The incorporation of Pr resulted in significant defects, as evidenced by Raman spectroscopy. The materials were evaluated as catalysts for the glycerol to methanol reaction, and it was found that an increased defect density or reducibility was beneficial. The space-time yield of methanol normalized to surface area over CeO2 was found to be 0.052 mmolMeOH m-2 h-1, and over CeZrO2 and CePrO2, this was to 0.029 and 0.076 mmolMeOH m-2 h-1, respectively. The inclusion of Pr reduced the surface area; however, the carbon mole selectivity to methanol and ethylene glycol remained relatively high, suggesting a shift in the reaction pathway compared to that over ceria. This article is part of a discussion meeting issue 'Science to enable the circular economy'.

11.
J Chem Phys ; 152(13): 134705, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32268741

RESUMO

The oxidation of glycerol under alkaline conditions in the presence of a heterogeneous catalyst can be tailored to the formation of lactic acid, an important commodity chemical. Despite recent advances in this area, the mechanism for its formation is still a subject of contention. In this study, we use a model 1 wt. % AuPt/TiO2 catalyst to probe this mechanism by conducting a series of isotopic labeling experiments with 1,3-13C glycerol. Optimization of the reaction conditions was first conducted to ensure high selectivity to lactic acid in the isotopic labeling experiments. Selectivity to lactic acid increased with temperature and concentration of NaOH, but increasing the O2 pressure appeared to influence only the rate of reaction. Using 1,3-13C glycerol, we demonstrate that conversion of pyruvaldehyde to lactic acid proceeds via a base-promoted 1,2-hydride shift. There was no evidence to suggest that this occurs via a 2,1-methide shift under the conditions used in this study.

12.
Environ Sci Technol ; 53(21): 12697-12705, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31577126

RESUMO

The development of efficient technologies to prevent the emission of hazardous chlorinated organics from industrial sources without forming harmful byproducts, such as dioxins, is a major challenge in environmental chemistry. Herein, we report a new hydrolytic destruction route for efficient chlorinated organics elimination and demonstrate that phosphoric acid-modified CeO2 (HP-CeO2) can decompose chlorobenzene (CB) without forming polychlorinated congeners under the industry-relevant reaction conditions. The active site and reaction pathway were investigated, and it was found that surface phosphate groups initially react with CB and water to form phenol and HCl, followed by deep oxidation. The high on-stream stability of the catalyst was due to the efficient generation of HCl, which removes Cl from the catalyst surface and ensures O2 activation and therefore deep oxidation of the hydrocarbons. Subsequent density functional theory calculations revealed a distinctly decreased formation energy of an oxygen vacancy at nearest (VO-1) and next-nearest (VO-2) surface sites to the bonded phosphate groups, which likely contributes to the high rate of oxidation observed over the catalyst. Significantly, no dioxins, which are frequently formed in the conventional oxidation route, were observed. This work not only reports an efficient route and corresponding phosphate active site for chlorinated organics elimination but also illustrates that the rational design of the reaction route can solve some of the most important challenges in environmental catalysis.


Assuntos
Fosfatos , Ácidos Fosfóricos , Catálise , Hidrólise , Oxirredução
13.
ACS Omega ; 4(14): 15985-15991, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31592469

RESUMO

The product distribution of ethers formed from the reaction of cinnamyl alcohol with orthoesters in the presence of indium (III) triflate (InOTf)3 is dependent on both the reaction temperature and catalyst loading. Carrying out the reaction at room temperature under low loadings of the catalyst leads to a facile reaction generating the unexpected secondary allyl ether as the major product. In contrast, carrying out the reaction under higher catalyst loadings at elevated temperatures provides the expected primary linear ether in high yield and with excellent selectivity. The etherification reaction is also effective in the presence of acetals and ketals in place of orthoesters and allows for the development of the procedure to encompass a telescoped etherification protocol in which the acetal is generated in situ.

14.
Nanomaterials (Basel) ; 8(7)2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-30021972

RESUMO

The one-step vacuum carbonization synthesis of a platinum nano-catalyst embedded in a microporous heterocarbon (Pt@cPIM) is demonstrated. A nitrogen-rich polymer of an intrinsic microporosity (PIM) precursor is impregnated with PtCl62- to give (after vacuum carbonization at 700 °C) a nitrogen-containing heterocarbon with embedded Pt nanoparticles of typically 1⁻4 nm diameter (with some particles up to 20 nm diameter). The Brunauer-Emmett-Teller (BET) surface area of this hybrid material is 518 m² g-1 (with a cumulative pore volume of 1.1 cm³ g-1) consistent with the surface area of the corresponding platinum-free heterocarbon. In electrochemical experiments, the heterocarbon-embedded nano-platinum is observed as reactive towards hydrogen oxidation, but essentially non-reactive towards bigger molecules during methanol oxidation or during oxygen reduction. Therefore, oxygen reduction under electrochemical conditions is suggested to occur mainly via a 2-electron pathway on the outer carbon shell to give H2O2. Kinetic selectivity is confirmed in exploratory catalysis experiments in the presence of H2 gas (which is oxidized on Pt) and O2 gas (which is reduced on the heterocarbon surface) to result in the direct formation of H2O2.

15.
Chemistry ; 24(47): 12359-12369, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-29790204

RESUMO

Ruthenium-ion-catalyzed oxidation (RICO) of polyaromatic hydrocarbons (PAHs) has been studied in detail using experimental and computational approaches to explore the reaction mechanism. DFT calculations show that regioselectivity in these reactions can be understood in terms of the preservation of aromaticity in the initial formation of a [3+2] metallocycle intermediate at the most-isolated double bond. We identify two competing pathways: C-C bond cleavage leading to a dialdehyde and C-H activation followed by H migration to the RuOx complex to give diketones. Experimentally, the oxidation of pyrene and phenanthrene has been carried out in monophasic and biphasic solvent systems. Our results show that diketones are the major product for both phenanthrene and pyrene substrates. These diketone products are shown to be stable under our reaction conditions so that higher oxidation products (acids and their derivatives) are assigned to the competing pathway through the dialdehyde. Experiments using 18 O-labelled water do show incorporation of oxygen from the solvents into products, but this may take place during the formation of the reactive RuO4 species rather than directly during PAH oxidation. When the oxidation of pyrene is carried out using D2 O, a kinetic isotope effect (KIE) is observed implying that water is involved in the rate-determining step leading to the diketone products.

16.
Chemphyschem ; 19(4): 402-411, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29266660

RESUMO

Catalytic methane oxidation using N2 O was investigated at 300 °C over Fe-ZSM-5. This reaction rapidly produces coke (retained organic species), and causes catalyst fouling. The introduction of water into the feed-stream resulted in a significant decrease in the coke selectivity and an increase in the selectivity to the desired product, methanol, from ca. 1 % up to 16 %. A detailed investigation was carried out to determine the fundamental effect of water on the reaction pathway and catalyst stability. The delplot technique was utilised to identify primary and secondary reaction products. This kinetic study suggests that observed gas phase products (CO, CO2 , CH3 OH, C2 H4 and C2 H6 ) form as primary products whilst coke is a secondary product. Dimethyl ether was not detected, however we consider that the formation of C2 products are likely to be due to an initial condensation of methanol within the pores of the zeolite and hence considered pseudo-primary products. According to a second order delplot analysis, coke is considered a secondary product and its formation correlates with CH3 OH formation. Control experiments in the absence of methane revealed that the rate of N2 O decomposition is similar to that of the full reaction mixture, indicating that the loss of active alpha-oxygen sites is the likely cause of the decrease in activity observed and water does not inhibit this process.

17.
Chemistry ; 24(3): 655-662, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29131412

RESUMO

Oxidation of aromatic hydrocarbons with differing numbers of fused aromatic rings (2-5), have been studied in two solvent environments (monophasic and biphasic) using ruthenium-ion-catalyzed oxidation (RICO). RICO reduces the aromaticity of the polyaromatic core of the molecule in a controlled manner by selective oxidative ring opening. Moreover, the nature of the solvent system determines the product type and distribution, for molecules with more than two aromatic rings. Competitive oxidation between substrates with different numbers of aromatic rings has been studied in detail. It was found that the rate of polyaromatic hydrocarbon oxidation increases with the number of fused aromatic rings. A similar trend was also identified for alkylated aromatic hydrocarbons. The proof-of-concept investigation provides new insight into selective oxidation chemistry for upgrading of polyaromatic molecules.

18.
Chemphyschem ; 19(4): 469-478, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29193556

RESUMO

Partial oxidative upgrading of C1 -C3 alkanes over Cu/ZSM-5 catalysts prepared by chemical vapour impregnation (CVI) has been studied. The undoped ZSM-5 support is itself able to catalyse selective oxidations, for example, methane to methanol, using mild reaction conditions and the green oxidant H2 O2 . Addition of Cu suppresses secondary oxidation reactions, affording methanol selectivities of up to 97 %. Characterisation studies attribute this ability to population of specific Cu sites below the level of total exchange (Cu/Al<0.5). These species also show activity for radical-based methane oxidation, with productivities exceeding those of the parent zeolite supports. When tested for ethane and propane oxidation reactions, comparable trends are observed.

19.
Science ; 358(6360): 223-227, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28882995

RESUMO

The selective oxidation of methane, the primary component of natural gas, remains an important challenge in catalysis. We used colloidal gold-palladium nanoparticles, rather than the same nanoparticles supported on titanium oxide, to oxidize methane to methanol with high selectivity (92%) in aqueous solution at mild temperatures. Then, using isotopically labeled oxygen (O2) as an oxidant in the presence of hydrogen peroxide (H2O2), we demonstrated that the resulting methanol incorporated a substantial fraction (70%) of gas-phase O2 More oxygenated products were formed than the amount of H2O2 consumed, suggesting that the controlled breakdown of H2O2 activates methane, which subsequently incorporates molecular oxygen through a radical process. If a source of methyl radicals can be established, then the selective oxidation of methane to methanol using molecular oxygen is possible.

20.
ChemCatChem ; 9(9): 1621-1631, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28706569

RESUMO

A series of copper-zinc acetate and zincian georgeite precursors have been produced by supercritical CO2 antisolvent (SAS) precipitation as precursors to Cu/ZnO catalysts for the water gas shift (WGS) reaction. The amorphous materials were prepared by varying the water/ethanol volumetric ratio in the initial metal acetate solutions. Water addition promoted georgeite formation at the expense of mixed metal acetates, which are formed in the absence of the water co-solvent. Optimum SAS precipitation occurs without water to give high surface areas, whereas high water content gives inferior surface areas and copper-zinc segregation. Calcination of the acetates is exothermic, producing a mixture of metal oxides with high crystallinity. However, thermal decomposition of zincian georgeite resulted in highly dispersed CuO and ZnO crystallites with poor structural order. The georgeite-derived catalysts give superior WGS performance to the acetate-derived catalysts, which is attributed to enhanced copper-zinc interactions that originate from the precursor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...