Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Pharmacol Ther ; 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38493367

RESUMO

Pediatric drug dosing is challenged by the heterogeneity of developing physiology and ethical considerations surrounding a vulnerable population. Often, pediatric drug dosing leverages findings from the adult population; however, recent regulatory efforts have motivated drug sponsors to pursue pediatric-specific programs to meet an unmet medical need and improve pediatric drug labeling. This paradigm is further complicated by the pathophysiological implications of obesity on drug distribution and metabolism and the roles that body composition and body size play in drug dosing. Therefore, we sought to understand the landscape of pediatric drug dosing by characterizing the dosing strategies from drug products recently approved for pediatric indications identified using FDA Drug Databases and analyze the impact of body size descriptors (age, body surface area, weight) on drug pharmacokinetics for several selected antipsychotics approved in pediatric patients. Our review of these pediatric databases revealed a dependence on body size-guided dosing, with 68% of dosing in pediatric drug labelings being dependent on knowing either the age, body surface area, or weight of the patient to guide dosing for pediatric patients. This dependence on body size-guided dosing drives the need for special consideration when dosing a drug in overweight and obese patients. Exploratory pharmacokinetic analyses in antipsychotics illustrate possible effects of drug exposure when applying different dosing strategies for this class of drugs. Future efforts should aim to further understand the pediatric drug dosing and obesity paradigm across pediatric age ranges and drug classes to optimize drug development and clinical care for this patient population.

2.
Clin Pharmacol Ther ; 115(5): 1065-1074, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38284409

RESUMO

In this study, we aimed to improve upon a published population pharmacokinetic (PK) model for venlafaxine (VEN) in the treatment of depression in older adults, then investigate whether CYP2D6 metabolizer status affected model-estimated PK parameters of VEN and its active metabolite O-desmethylvenlafaxine. The model included 325 participants from a clinical trial in which older adults with depression were treated with open-label VEN (maximum 300 mg/day) for 12 weeks and plasma levels of VEN and O-desmethylvenlafaxine were assessed at weeks 4 and 12. We fitted a nonlinear mixed-effect PK model using NONMEM to estimate PK parameters for VEN and O-desmethylvenlafaxine adjusted for CYP2D6 metabolizer status and age. At both lower doses (up to 150 mg/day) and higher doses (up to 300 mg/day), CYP2D6 metabolizers impacted PK model-estimated VEN clearance, VEN exposure, and active moiety (VEN + O-desmethylvenlafaxine) exposure. Specifically, compared with CYP2D6 normal metabolizers, (i) CYP2D6 ultra-rapid metabolizers had higher VEN clearance; (ii) CYP2D6 intermediate metabolizers had lower VEN clearance; (iii) CYP2D6 poor metabolizers had lower VEN clearance, higher VEN exposure, and higher active moiety exposure. Overall, our study showed that including a pharmacogenetic factor in a population PK model could increase model fit, and this improved model demonstrated how CYP2D6 metabolizer status affected VEN-related PK parameters, highlighting the importance of genetic factors in personalized medicine.


Assuntos
Cicloexanóis , Citocromo P-450 CYP2D6 , Idoso , Humanos , Cicloexanóis/farmacocinética , Cicloexanóis/uso terapêutico , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Depressão/tratamento farmacológico , Succinato de Desvenlafaxina , Genótipo , Fenótipo , Cloridrato de Venlafaxina/farmacocinética , Cloridrato de Venlafaxina/uso terapêutico
3.
Clin Pharmacokinet ; 62(11): 1621-1637, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37755681

RESUMO

BACKGROUND AND OBJECTIVE: Escitalopram and sertraline are commonly prescribed for anxiety and depressive disorders in children and adolescents. The pharmacokinetics (PK) of these medications have been evaluated in adults and demonstrate extensive variability, but studies in pediatric patients are limited. Therefore, we performed a population PK analysis for escitalopram and sertraline in children and adolescents to characterize the effects of demographic, clinical, and pharmacogenetic factors on drug exposure. METHODS: A PK dataset was generated by extracting data from the electronic health record and opportunistic sampling of escitalopram- and sertraline-treated psychiatrically hospitalized pediatric patients aged 5-18 years. A population PK analysis of escitalopram and sertraline was performed using NONMEM. Concentration-time profiles were simulated using MwPharm++ to evaluate how covariates included in the final models influence medication exposure and compared to adult therapeutic reference ranges. RESULTS: The final escitalopram cohort consisted of 315 samples from 288 patients, and the sertraline cohort consisted of 265 samples from 255 patients. A one-compartment model with a proportional residual error model best described the data for both medications. For escitalopram, CYP2C19 phenotype and concomitant CYP2C19 inhibitors affected apparent clearance (CL/F), and normalizing CL/F and apparent volume of distribution (V/F) to body surface area (BSA) improved estimations. The final escitalopram model estimated CL/F and V/F at 14.2 L/h/1.73 m2 and 428 L/1.73 m2, respectively. For sertraline, CYP2C19 phenotype and concomitant CYP2C19 inhibitors influenced CL/F, and empirical allometric scaling of patient body weight on CL/F and V/F was significant. The final sertraline model estimated CL/F and V/F at 124 L/h/70 kg and 4320 L/70 kg, respectively. Normalized trough concentrations (Ctrough) for CYP2C19 poor metabolizers taking escitalopram were 3.98-fold higher compared to normal metabolizers (151.1 ng/mL vs 38.0 ng/mL, p < 0.0001), and normalized Ctrough for CYP2C19 poor metabolizers taking sertraline were 3.23-fold higher compared to normal, rapid, and ultrarapid metabolizers combined (121.7 ng/mL vs 37.68 ng/mL, p < 0.0001). Escitalopram- and sertraline-treated poor metabolizers may benefit from a dose reduction of 50-75% and 25-50%, respectively, to normalize exposure to other phenotypes. CONCLUSION: To our knowledge, this is the largest population PK analysis of escitalopram and sertraline in pediatric patients. Significant PK variability for both medications was observed and was largely explained by CYP2C19 phenotype. Slower CYP2C19 metabolizers taking escitalopram or sertraline may benefit from dose reductions given increased exposure.


Assuntos
Escitalopram , Sertralina , Adulto , Adolescente , Humanos , Criança , Sertralina/farmacocinética , Sertralina/uso terapêutico , Citocromo P-450 CYP2C19/genética , Inibidores do Citocromo P-450 CYP2C19 , Fenótipo
4.
CPT Pharmacometrics Syst Pharmacol ; 12(12): 1827-1845, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37771190

RESUMO

There has been rising interest in using model-informed precision dosing to provide personalized medicine to patients at the bedside. This methodology utilizes population pharmacokinetic models, measured drug concentrations from individual patients, pharmacodynamic biomarkers, and Bayesian estimation to estimate pharmacokinetic parameters and predict concentration-time profiles in individual patients. Using these individualized parameter estimates and simulated drug exposure, dosing recommendations can be generated to maximize target attainment to improve beneficial effect and minimize toxicity. However, the accuracy of the output from this evaluation is highly dependent on the population pharmacokinetic model selected. This tutorial provides a comprehensive approach to evaluating, selecting, and validating a model for input and implementation into a model-informed precision dosing program. A step-by-step outline to validate successful implementation into a precision dosing tool is described using the clinical software platforms Edsim++ and MwPharm++ as examples.


Assuntos
Modelos Biológicos , Software , Humanos , Teorema de Bayes , Medicina de Precisão
5.
Clin Transl Sci ; 16(11): 2130-2143, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37503924

RESUMO

The MTXPK.org webtool was launched in December 2019 and was developed to facilitate model-informed supportive care and optimal use of glucarpidase following the administration of high-dose methotrexate (HDMTX). One limitation identified during the original development of the MTXPK.org tool was the perceived generalizability because the modeled population comprised solely of Nordic pediatric patients receiving 24-h infusions for the treatment of acute lymphoblastic leukemia. The goal of our study is to describe the pharmacokinetics of HDMTX from a diverse patient population (e.g., races, ethnicity, indications for methotrexate, and variable infusion durations) and identify meaningful factors that account for methotrexate variability and improve the model's performance. To do this, retrospectively analyzed pharmacokinetic and toxicity data from pediatric and adolescent young adult patients who were receiving HDMTX (>0.5 g/m2 ) for the treatment of a cancer diagnosis from three pediatric medical centers. We performed population pharmacokinetic modeling referencing the original MTXPK.org NONMEM model (includes body surface area and serum creatinine as covariates) on 1668 patients, 7506 administrations of HDMTX, and 30,250 concentrations. Our results support the parameterizations of short infusion duration (<8 h) and the presence of Down syndrome on methotrexate clearance, the parameterization of severe hypoalbuminemia (<2.5 g/dL) on the intercompartmental clearance (Q2 and Q3), and the parameterization of pleural effusion on the volume of distribution (V1 and V2). These novel parameterizations will increase the generalizability of the MTXPK.org model once they are added to the webtool.


Assuntos
Metotrexato , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adolescente , Adulto Jovem , Criança , Humanos , Antimetabólitos Antineoplásicos/farmacocinética , Estudos Retrospectivos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico
6.
Expert Opin Drug Metab Toxicol ; 19(1): 1-11, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36800927

RESUMO

INTRODUCTION: In the United States, obesity affects approximately ⅖ adults and ⅕ children, leading to increased risk for comorbidities, like gastroesophageal reflux disease (GERD), treated increasingly with proton pump inhibitors (PPIs). Currently, there are no clinical guidelines to inform PPI dose selection for obesity, with sparse data regarding whether dose augmentation is necessary. AREAS COVERED: We provide a review of available literature regarding the pharmacokinetics (PK), pharmacodynamics (PD), and/or metabolism of PPIs in children and adults with obesity, as a step toward informing PPI dose selection. EXPERT OPINION: Published PK data in adults and children are limited to first-generation PPIs and point toward reduced apparent oral drug clearance in obesity, with equipoise regarding obesity impact on drug absorption. Available PD data are sparse, conflicting, and limited to adults. No studies are available to inform the PPI PK→PD relationship in obesity and if/how it differs compared to individuals without obesity. In the absence of data, best practice may be to dose PPIs based on CYP2C19 genotype and lean body weight, so as to avoid systemic overexposure and potential toxicities, while monitoring closely for efficacy.


Assuntos
Refluxo Gastroesofágico , Inibidores da Bomba de Prótons , Criança , Humanos , Inibidores da Bomba de Prótons/efeitos adversos , Refluxo Gastroesofágico/tratamento farmacológico , Refluxo Gastroesofágico/induzido quimicamente , Obesidade/tratamento farmacológico , Assistência ao Paciente
7.
Br J Clin Pharmacol ; 89(2): 660-671, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35998099

RESUMO

AIMS: High-dose methotrexate (HDMTX) is an essential part of the treatment of several adult and paediatric malignancies. Despite meticulous supportive care during HDMTX administration, severe toxicities, including acute kidney injury (AKI), may occur contributing to patient morbidity. Population pharmacokinetics provide a powerful tool to predict time to clear HDMTX and adjust subsequent doses. We sought to develop and validate pharmacokinetic models for HDMTX in adults with diverse malignancies and to relate systemic exposure with the occurrence of severe toxicity. METHODS: Anonymized, de-identified data were provided from 101 US oncology practices that participate in the Guardian Research Network, a non-profit clinical research consortium. Modelled variables included clinical, laboratory, demographic and pharmacological data. Population pharmacokinetic analysis was performed by means of nonlinear mixed effects modelling using MonolixSuite. RESULTS: A total of 693 HDMTX courses from 243 adults were analysed, of which 62 courses (8.8%) were associated with stage 2/3 acute kidney injury (43 stage 2, 19 stage 3). A three-compartment model adequately fitted the data. Time-dependent serum creatinine, baseline serum albumin and allometrically scaled bodyweight were clinically significant covariates related to methotrexate clearance. External evaluation confirmed a satisfactory predictive performance of the model in adults receiving HDMTX. Dose-normalized methotrexate concentration at 24 and 48 hours correlated with AKI incidence. CONCLUSION: We developed a population pharmacometric model that considers weight, albumin and time-dependent creatinine that can be used to guide supportive care in adult patients with delayed HDMTX elimination.


Assuntos
Injúria Renal Aguda , Neoplasias , Criança , Humanos , Adulto , Metotrexato , Antimetabólitos Antineoplásicos , Neoplasias/tratamento farmacológico , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/epidemiologia , Convulsões/tratamento farmacológico
8.
Br J Clin Pharmacol ; 88(4): 1418-1426, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-32529759

RESUMO

Providing maximal therapeutic efficacy without toxicity is a universal goal of rational drug therapy. However, substantial between-patient variability in drug response often impedes such successful treatments and brings the necessity of tailoring drug dose to individual needs for more precise therapy. In many cases plenty of patient characteristics, such as body size, genetic makeup and environmental factors, need to be taken into consideration to find the optimal dose in clinical practice. A pharmacokinetics and pharmacodynamics (PK/PD) model-informed approach offers integration of various patient information to provide an expectation of drug response and derive practical dose estimates to support clinicians' dosing decisions. Such an approach was pioneered in the late 1970s, but its broad clinical acceptance and implementation have been hampered by the lack of widespread computer technology, including user-friendly software tools. This has significantly changed in recent years. With the advent of electronic health records (EHRs) and the ubiquity of user-friendly software tools, we now experience a convergence of clinical information, pharmacogenetics, systems pharmacology and pharmacometrics, and technology. Advanced pharmacometrics research is now more appliable and implementable to improve health care. This article presents examples of successful development and implementation of pharmacogenetics-guided and PK/PD model-informed decision support to facilitate precision dosing, including the development of an EHR-embedded decision support tool. Through the integration of clinical decision support tools in EHRs, clinical pharmacometrics support can be brought directly to the clinical team and the bedside.


Assuntos
Registros Eletrônicos de Saúde , Farmacogenética , Atenção à Saúde , Humanos , Assistência ao Paciente , Software
9.
Clin Transl Sci ; 15(1): 63-69, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34423897

RESUMO

Low-dose methotrexate (MTX) is an immunosuppressant used to treat inflammatory bowel disease (IBD). SLCO1B1 genetic variation has been associated with delayed MTX clearance and increased toxicity. The purpose of this study was to evaluate the association between SLCO1B1 genetic variation and MTX-induced nausea in children with IBD. We performed a single center retrospective chart analysis of 278 patients who were prescribed MTX for IBD. Two hundred two patients had banked DNA and were genotyped for three SLCO1B1 single nucleotide polymorphisms (SNPs; rs4149056, rs2306283, and rs11045819). Diplotypes were determined by combining the SNPs into *1, *4, *5, *14, *15, and *37 alleles. Incidence of nausea was abstracted from clinician notes. Prescriptions and demographics were extracted from the medical record. The cohort was 69.8% boys, 89.1% White, and 87.6% had a diagnosis of Crohn's disease with a mean age of 16.0 (± 3.8) years. MTX-induced nausea was noted in 34% of the cohort. MTX-induced nausea was associated with the number of reduced-function *15 alleles (p = 0.034) and occurred 2.26 times more often in patients with at least one *15 allele who did not initiate MTX treatment with concomitant ondansetron (p = 0.034). MTX-induced nausea was significantly independently associated with SLCO1B1 diplotype (p = 0.006) after controlling for MTX dose group and concomitant ondansetron. Our data demonstrate that the SLCO1B1 *15 allele is associated with MTX-induced nausea in pediatric patients with IBD. Additionally, *15 allele carriers could benefit from a dose reduction of MTX to reduce exposure and treatment initiation with concomitant ondansetron to reduce nausea.


Assuntos
Alelos , Doenças Inflamatórias Intestinais , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Metotrexato/administração & dosagem , Metotrexato/efeitos adversos , Náusea/induzido quimicamente , Adolescente , Criança , Pré-Escolar , Feminino , Técnicas de Genotipagem , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Estudos Retrospectivos , Adulto Jovem
10.
Cancers (Basel) ; 13(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200242

RESUMO

Methotrexate (MTX) is a mainstay therapeutic agent administered at high doses for the treatment of pediatric and adult malignancies, such as acute lymphoblastic leukemia, osteosarcoma, and lymphoma. Despite the vast evidence for clinical efficacy, high-dose MTX displays significant inter-individual pharmacokinetic variability. Delayed MTX clearance can lead to prolonged, elevated exposure, causing increased risks for nephrotoxicity, mucositis, seizures, and neutropenia. Numerous pharmacogenetic studies have investigated the effects of several genes and polymorphisms on MTX clearance in an attempt to better understand the pharmacokinetic variability and improve patient outcomes. To date, several genes and polymorphisms that affect MTX clearance have been identified. However, evidence for select genes have conflicting results or lack the necessary replication and validation needed to confirm their effects on MTX clearance. Therefore, we performed a systematic review to identify and then summarize the pharmacogenetic factors that influence high-dose MTX pharmacokinetics in pediatric malignancies. Using the PRISMA guidelines, we analyzed 58 articles and 24 different genes that were associated with transporter pharmacology or the folate transport pathway. We conclude that there is only one gene that reliably demonstrates an effect on MTX pharmacokinetics: SLCO1B1.

11.
Clin Transl Sci ; 14(6): 2267-2277, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34121338

RESUMO

Low-dose methotrexate (MTX) is a first-line therapy for the treatment of arthritis. However, there is considerable interindividual variability in MTX exposure following standard dosing. Polymorphisms in SLCO1B1 significantly effect MTX clearance, altering therapeutic response. One decreased function variant, rs4149056 (c.521T>C, Val174Ala), slows MTX clearance and in vitro uptake of MTX. This phenotype was recapitulated in a mouse model using a knockout (KO) of the murine orthologue, Slco1b2. Our objective was to investigate the impact of this phenotype on the pharmacokinetics and therapeutic outcomes of low-dose MTX in a murine model of collagen-induced arthritis (CIA). We evaluated response to MTX in mice with CIA using wildtype (WT), heterozygous, and KO Slco1b2 mice on a DBA1/J background. Arthritis was macroscopically evaluated daily to quantify disease progression. Mice received 2 mg/kg or a pharmacogenetically guided MTX dose subcutaneously 3 times a week for 2 weeks. MTX concentrations were collected at the end of the study and exposure (day*µM) was estimated using a two-compartment model. Mice displayed a seven-fold range in MTX exposure and revealed a significant exposure-response relationship (p = 0.0027). KO mice receiving the 2 mg/kg dosing regimen had 2.3-fold greater exposure to MTX (p < 0.0001) and a 66% reduction in overall disease progression (p = 0.011) compared to WT mice. However, exposure and response were equivalent when pharmacogenetically guided dosing was used. These studies demonstrate that an exposure-response relationship exists for MTX and that Slco1b2 genotype affects MTX exposure and therapeutic response. Such evidence supports the use of SLCO1B1-pharmacogenetic dosing of low-dose MTX for patients with arthritis.


Assuntos
Antirreumáticos/administração & dosagem , Artrite/tratamento farmacológico , Transportador 1 de Ânion Orgânico Específico do Fígado , Metotrexato/administração & dosagem , Camundongos Knockout , Testes Farmacogenômicos , Animais , Antirreumáticos/farmacologia , Colágeno/efeitos dos fármacos , Colágeno/metabolismo , Genótipo , Humanos , Masculino , Metotrexato/farmacologia , Camundongos , Farmacogenética
12.
Clin Pharmacol Ther ; 108(3): 635-643, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32558929

RESUMO

Methotrexate (MTX), an antifolate, is administered at high doses to treat malignancies in children and adults. However, there is considerable interpatient variability in clearance of high-dose (HD) MTX. Patients with delayed clearance are at an increased risk for severe nephrotoxicity and life-threatening systemic MTX exposure. Glucarpidase is a rescue agent for severe MTX toxicity that reduces plasma MTX levels via hydrolysis of MTX into inactive metabolites, but is only indicated when MTX concentrations are > 2 SDs above the mean excretion curve specific for the given dose together with a significant creatinine increase (> 50%). Appropriate administration of glucarpidase is challenging due to the ambiguity in the labeled indication. A recent consensus guideline was published with an algorithm to provide clarity in when to administer glucarpidase, yet clinical interpretation of laboratory results that do not directly correspond to the algorithm prove to be a limitation of its use. The goal of our study was to develop a clinical decision support tool to optimize the administration of glucarpidase for patients receiving HD MTX. Here, we describe the development of a novel 3-compartment MTX population pharmacokinetic (PK) model using 31,672 MTX plasma concentrations from 772 pediatric patients receiving HD MTX for the treatment of acute lymphoblastic leukemia and its integration into the online clinical decision support tool, MTXPK.org. This web-based tool has the functionality to utilize individualized demographics, serum creatinine, and real-time drug concentrations to predict the elimination profile and facilitate model-informed administration of glucarpidase.


Assuntos
Antimetabólitos Antineoplásicos/farmacocinética , Técnicas de Apoio para a Decisão , Metotrexato/farmacocinética , Modelos Teóricos , gama-Glutamil Hidrolase/uso terapêutico , Adolescente , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/efeitos adversos , Criança , Pré-Escolar , Tomada de Decisão Clínica , Rotulagem de Medicamentos , Feminino , Humanos , Hidrólise , Inativação Metabólica , Lactente , Infusões Intravenosas , Masculino , Metotrexato/administração & dosagem , Metotrexato/efeitos adversos , Proteínas Recombinantes/uso terapêutico , Estudos Retrospectivos
13.
Bioorg Med Chem Lett ; 28(3): 334-338, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29290543

RESUMO

Prostaglandin E2 (PGE2) is a lipid mediator of inflammation and its inhibition has become a popular drug target due to its harmful physiological roles. Diarylheptanoids are one class of compounds that have shown successful inhibition of PGE2. This paper reports the synthesis and PGE2 inhibitory activity of a series of analogues of a naturally occurring diarylheptanoid. The most efficacious compounds were examined for dose-dependent PGE2 inhibition. Among several promising compounds, the lead candidate exhibited an IC50 value of 0.56 ng/µL or 1.7 µM with no detectable toxicity at the highest dose of 10 ng/µL.


Assuntos
Diarileptanoides/farmacologia , Dinoprostona/antagonistas & inibidores , Diarileptanoides/síntese química , Diarileptanoides/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...