Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21264082

RESUMO

SARS-CoV-2 is spread primarily through person-to-person contacts. Quantifying population contact rates is important for understanding the impact of physical distancing policies and for modeling COVID-19, but contact patterns have changed substantially over time due to shifting policies and behaviors. There are surprisingly few empirical estimates of age-structured contact rates in the United States both before and throughout the COVID-19 pandemic that capture these changes. Here, we use data from six waves of the Berkeley Interpersonal Contact Survey (BICS), which collected detailed contact data between March 22, 2020 and February 15, 2021 across six metropolitan designated market areas (DMA) in the United States. Contact rates were low across all six DMAs at the start of the pandemic. We find steady increases in the mean and median number of contacts across these localities over time, as well as a greater proportion of respondents reporting a high number of contacts. We also find that young adults between ages 18 and 34 reported more contacts on average compared to other age groups. The 65 and older age group consistently reported low levels of contact throughout the study period. To understand the impact of these changing contact patterns, we simulate COVID-19 dynamics in each DMA using an age-structured mechanistic model. We compare results from models that use BICS contact rate estimates versus commonly used alternative contact rate sources. We find that simulations parameterized with BICS estimates give insight into time-varying changes in relative incidence by age group that are not captured in the absence of these frequently updated estimates. We also find that simulation results based on BICS estimates closely match observed data on the age distribution of cases, and changes in these distributions over time. Together these findings highlight the role of different age groups in driving and sustaining SARS-CoV-2 transmission in the U.S. We also show the utility of repeated contact surveys in revealing heterogeneities in the epidemiology of COVID-19 across localities in the United States.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21249196

RESUMO

BackgroundNew data streams are being used to track the pandemic of SARS-CoV-2, including genomic data which provides insights into patterns of importation and spatial spread of the virus, as well as population mobility data obtained from mobile phones. Here, we analyse the emergence and outbreak trajectory of SARS-CoV-2 in Bangladesh using these new data streams, and identify mass population movements as a key early event driving the ongoing epidemic. MethodsWe sequenced complete genomes of 67 SARS-CoV-2 samples (March-July 2020) and combined this dataset with 324 genomes from Bangladesh. For phylogenetic context, we also used 68,000 GISAID genomes collected globally. We paired this genomic data with population mobility information from Facebook and three mobile phone operators. FindingsThe majority (85%) of the Bangladeshi sequenced isolates fall into either pangolin lineage B.1.36 (8%), B.1.1 (19%) or B.1.1.25 (58%). Bayesian time-scaled phylogenetic analysis predicted SARS-COV-2 first appeared in mid-February, through international introductions. The first case was reported on March 8th. This pattern of repeated international introduction changed at the end of March when three discrete lineages expanded and spread clonally across Bangladesh. The shifting pattern of viral diversity across Bangladesh is reflected in the mobility data which shows the mass migration of people from cities to rural areas at the end of March, followed by frequent travel between Dhaka and the rest of the country during the following months. InterpretationIn Bangladesh, population mobility out of Dhaka as well as frequent travel from urban hotspots to rural areas resulted in rapid country-wide dissemination of SARS-CoV-2. The strains in Bangladesh reflect the local expansion of global lineages introduced early from international travellers to and from major international travel hubs. Importantly, the Bangladeshi context is consistent with epidemiologic and phylogenetic findings globally. Bangladesh is one of the few countries in the world with a rich history of conducting mass vaccination campaigns under complex circumstances. Combining genomics and these new data streams should allow population movements to be modelled and anticipated rendering Bangladesh extremely well prepared to immunize citizens rapidly. Based on our genomics data and the countrys successful immunization history, vaccines becoming available globally will be suitable for implementation in Bangladesh while ongoing genomic surveillance is conducted to monitor for new variants of the virus. FundingGovernment of Bangladesh, Bill and Melinda Gates Foundation, Wellcome Trust. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSThe emergence of SARS-CoV-2, leading to the COVID-19 pandemic, has motivated all countries in the world to obtain high resolution data on the virus. Globally over 300,000 strains have been sequenced and information made available in GISAID. Within the first 100 days of the emergence of SARS-CoV-2, genomic analysis from different countries led to the development of vaccines which have now reached market. Information on the prevailing genotypes of SARS-CoV-2 since introduction is needed in low and middle-income countries (LMICs), including Bangladesh, in order to determine the suitability of therapeutics and vaccines in the pipeline and help vaccine deployment. Added value of this studyWe sequenced SARS-CoV-2 genomes from strains that were prospectively collected during the height of the pandemic and combined these genomic data with mobility data to comprehensively describe i) how repeated international importations of SARS-CoV-2 were ultimately linked to nationwide spread, ii) 85% of strains belonged to the Pangolin lineages B.1.1, B.1.1.25 and B.1.36 and that similar mutation rates were observed as seen globally iii) the switch in genomic dynamics of SARS-CoV-2 coincided with mass migration out of cities to the rest of the country. We have assessed the contributions of population mobility on the maintenance and spread of clonal lineages of SARS-CoV-2. This is the first time these data types have been combined to look at the spread of this virus nationally. Implications of all the available evidenceSARS-CoV-2 genomic diversity and mutation rate in Bangladesh is comparable to strains circulating globally. Notably, the data on the genomic changes of SARS-CoV-2 in Bangladesh is reassuring, suggesting that immunotherapeutic and vaccines being developed globally should also be suitable for this population. Since Bangladesh already has extensive experience of conducting mass vaccination campaigns, such as the rollout of the oral Cholera vaccine, experience of developing and using new data streams will enable efficient and targeted immunization of the population in 2021 with COVID-19 vaccine(s).

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20058248

RESUMO

BackgroundThe spread of Coronavirus Disease 2019 (COVID-19) across the United States confirms that not all Americans are equally at risk of infection, severe disease, or mortality. A range of intersecting biological, demographic, and socioeconomic factors are likely to determine an individuals susceptibility to COVID-19. These factors vary significantly across counties in the United States, and often reflect the structural inequities in our society. Recognizing this vast inter-county variation in risks will be critical to mounting an adequate response strategy. Methods and FindingsUsing publicly available county-specific data we identified key biological, demographic, and socioeconomic factors influencing susceptibility to COVID-19, guided by international experiences and consideration of epidemiological parameters of importance. We created bivariate county-level maps to summarize examples of key relationships across these categories, grouping age and poverty; comorbidities and lack of health insurance; proximity, density and bed capacity; and race and ethnicity, and premature death. We have also made available an interactive online tool that allows public health officials to query risk factors most relevant to their local context. Our data demonstrate significant inter-county variation in key epidemiological risk factors, with a clustering of counties in certain states, which will result in an increased demand on their public health system. While the East and West coast cities are particularly vulnerable owing to their densities (and travel routes), a large number of counties in the Southeastern states have a high proportion of at-risk populations, with high levels of poverty, comorbidities, and premature death at baseline, and low levels of health insurance coverage. The list of variables we have examined is by no means comprehensive, and several of them are interrelated and magnify underlying vulnerabilities. The online tool allows readers to explore additional combinations of risk factors, set categorical thresholds for each covariate, and filter counties above different population thresholds. ConclusionCOVID-19 responses and decision making in the United States remain decentralized. Both the federal and state governments will benefit from recognizing high intra-state, inter-county variation in population risks and response capacity. Many of the factors that are likely to exacerbate the burden of COVID-19 and the demand on healthcare systems are the compounded result of long-standing structural inequalities in US society. Strategies to protect those in the most vulnerable counties will require urgent measures to better support communities attempts at social distancing and to accelerate cooperation across jurisdictions to supply personnel and equipment to counties that will experience high demand.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20047662

RESUMO

COVID-19 is now a pandemic and many of the affected countries face severe shortages of hospital resources. In Brazil, the first case was reported on February 26. As the number of cases grows in the country, there is a concern that the health system may become overwhelmed, resulting in shortages of hospital beds, intensive care unit beds, and mechanical ventilators. The timing of shortage is likely to vary geographically depending on the observed onset and pace of transmission observed, on the availability of resources, and on the actions implemented. Here we consider the daily number of cases reported in municipalities in Brazil to simulate twelve alternative scenarios of the likely timing of shortage, based on parameters consistently reported for China and Italy, on rates of hospital occupancy for other health conditions observed in Brazil in 2019, and on assumptions of allocation of patients in public and private facilities. Results show that hospital services could start to experience shortages of hospital beds, ICU beds, and ventilators in early April, the most critical situation observed for ICU beds. Increasing the allocation of beds for COVID-19 (in lieu of other conditions) or temporarily placing all resources under the administration of the state delays the anticipated start of shortages by a week. This suggests that solutions adopted by the Brazilian government must aim at expanding the available capacity (e.g., makeshift hospitals), and not simply prioritizing the allocation of available resources to COVID-19.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20038331

RESUMO

Early in the COVID-19 pandemic, when cases were predominantly reported in the city of Wuhan, China, local outbreaks in Europe, North America, and Asia were largely predicted from imported cases on flights from Wuhan, potentially missing imports from other key source cities. Here, we account for importations from Wuhan and from other cities in China, combining COVID-19 prevalence estimates in 18 Chinese cities with estimates of flight passenger volume to predict for each day between early December 2019 to late February 2020 the number of cases exported from China. We predict that the main source of global case importation in early January was Wuhan, but due to the Wuhan lockdown and the rapid spread of the virus, the main source of case importation from mid February became Chinese cities outside of Wuhan. For destinations in Africa in particular, non-Wuhan cities were an important source of case imports (1 case from those cities for each case from Wuhan, range of model scenarios: 0.1-9.8). Our model predicts that 18.4 (8.5 - 100) COVID-19 cases were imported to 26 destination countries in Africa, with most of them (90%) predicted to have arrived between 7th January ({+/-}10 days) and 5th February ({+/-}3 days), and all of them predicted prior to the first case detections. We finally observed marked heterogeneities in expected imported cases across those locations. Our estimates shed light on shifting sources and local risks of case importation which can help focus surveillance efforts and guide public health policy during the final stages of the pandemic. We further provide a time window for the seeding of local epidemics in African locations, a key parameter for estimating expected outbreak size and burden on local health care systems and societies, that has yet to be defined in these locations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA