Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Methods ; 21(3): 531-540, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38279009

RESUMO

Analysis across a growing number of single-cell perturbation datasets is hampered by poor data interoperability. To facilitate development and benchmarking of computational methods, we collect a set of 44 publicly available single-cell perturbation-response datasets with molecular readouts, including transcriptomics, proteomics and epigenomics. We apply uniform quality control pipelines and harmonize feature annotations. The resulting information resource, scPerturb, enables development and testing of computational methods, and facilitates comparison and integration across datasets. We describe energy statistics (E-statistics) for quantification of perturbation effects and significance testing, and demonstrate E-distance as a general distance measure between sets of single-cell expression profiles. We illustrate the application of E-statistics for quantifying similarity and efficacy of perturbations. The perturbation-response datasets and E-statistics computation software are publicly available at scperturb.org. This work provides an information resource for researchers working with single-cell perturbation data and recommendations for experimental design, including optimal cell counts and read depth.


Assuntos
Proteômica , Software , Perfilação da Expressão Gênica/métodos , Epigenômica , Análise de Célula Única
3.
Cell Rep Methods ; 3(10): 100599, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37797618

RESUMO

For large libraries of small molecules, exhaustive combinatorial chemical screens become infeasible to perform when considering a range of disease models, assay conditions, and dose ranges. Deep learning models have achieved state-of-the-art results in silico for the prediction of synergy scores. However, databases of drug combinations are biased toward synergistic agents and results do not generalize out of distribution. During 5 rounds of experimentation, we employ sequential model optimization with a deep learning model to select drug combinations increasingly enriched for synergism and active against a cancer cell line-evaluating only ∼5% of the total search space. Moreover, we find that learned drug embeddings (using structural information) begin to reflect biological mechanisms. In silico benchmarking suggests search queries are ∼5-10× enriched for highly synergistic drug combinations by using sequential rounds of evaluation when compared with random selection or ∼3× when using a pretrained model.


Assuntos
Biologia Computacional , Neoplasias , Humanos , Sinergismo Farmacológico , Biologia Computacional/métodos , Combinação de Medicamentos , Neoplasias/tratamento farmacológico
4.
Nat Genet ; 55(9): 1542-1554, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37580596

RESUMO

Cellular differentiation requires extensive alterations in chromatin structure and function, which is elicited by the coordinated action of chromatin and transcription factors. By contrast with transcription factors, the roles of chromatin factors in differentiation have not been systematically characterized. Here, we combine bulk ex vivo and single-cell in vivo CRISPR screens to characterize the role of chromatin factor families in hematopoiesis. We uncover marked lineage specificities for 142 chromatin factors, revealing functional diversity among related chromatin factors (i.e. barrier-to-autointegration factor subcomplexes) as well as shared roles for unrelated repressive complexes that restrain excessive myeloid differentiation. Using epigenetic profiling, we identify functional interactions between lineage-determining transcription factors and several chromatin factors that explain their lineage dependencies. Studying chromatin factor functions in leukemia, we show that leukemia cells engage homeostatic chromatin factor functions to block differentiation, generating specific chromatin factor-transcription factor interactions that might be therapeutically targeted. Together, our work elucidates the lineage-determining properties of chromatin factors across normal and malignant hematopoiesis.


Assuntos
Cromatina , Leucemia , Humanos , Cromatina/genética , Linhagem da Célula/genética , Hematopoese/genética , Diferenciação Celular/genética , Fatores de Transcrição/genética
5.
Trends Genet ; 38(4): 317-320, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34702579

RESUMO

Complex diseases, including ageing, often exhibit sexual dimorphism. These sex differences can obfuscate attribution to causal genes within a target ID campaign. Mendelian randomisation (MR)-inspired analysis provides a natural setting to incorporate X-linked aneuploid populations, resulting in prioritisation of longevity-enhancing drug targets and motivating greater inclusion of said populations in future profiling studies.


Assuntos
Longevidade , Doenças Raras , Aneuploidia , Feminino , Humanos , Longevidade/genética , Masculino , Análise da Randomização Mendeliana
6.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34013350

RESUMO

Graph machine learning (GML) is receiving growing interest within the pharmaceutical and biotechnology industries for its ability to model biomolecular structures, the functional relationships between them, and integrate multi-omic datasets - amongst other data types. Herein, we present a multidisciplinary academic-industrial review of the topic within the context of drug discovery and development. After introducing key terms and modelling approaches, we move chronologically through the drug development pipeline to identify and summarize work incorporating: target identification, design of small molecules and biologics, and drug repurposing. Whilst the field is still emerging, key milestones including repurposed drugs entering in vivo studies, suggest GML will become a modelling framework of choice within biomedical machine learning.


Assuntos
Gráficos por Computador , Desenvolvimento de Medicamentos/métodos , Descoberta de Drogas/métodos , Aprendizado de Máquina , Modelos Moleculares , Estrutura Molecular , Algoritmos , Reposicionamento de Medicamentos , Redes Neurais de Computação
7.
Artigo em Inglês | MEDLINE | ID: mdl-32793566

RESUMO

Advanced cancers, such as prostate and breast cancers, commonly metastasize to bone. In the bone matrix, dendritic osteocytes form a spatial network allowing communication between osteocytes and the osteoblasts located on the bone surface. This communication network facilitates coordinated bone remodeling. In the presence of a cancerous microenvironment, the topology of this network changes. In those situations, osteocytes often appear to be either overdifferentiated (i.e., there are more dendrites than healthy bone) or underdeveloped (i.e., dendrites do not fully form). In addition to structural changes, histological sections from metastatic breast cancer xenografted mice show that number of osteocytes per unit area is different between healthy bone and cancerous bone. We present a stochastic agent-based model for bone formation incorporating osteoblasts and osteocytes that allows us to probe both network structure and density of osteocytes in bone. Our model both allows for the simulation of our spatial network model and analysis of mean-field equations in the form of integro-partial differential equations. We considered variations of our model to study specific physiological hypotheses related to osteoblast differentiation; for example predicting how changing biological parameters, such as rates of bone secretion, rates of cancer formation, and rates of osteoblast differentiation can allow for qualitatively different network topologies. We then used our model to explore how commonly applied therapies such as bisphosphonates (e.g., zoledronic acid) impact osteocyte network formation.

8.
PLoS Comput Biol ; 16(1): e1007491, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31923173

RESUMO

Recent high-dimensional single-cell technologies such as mass cytometry are enabling time series experiments to monitor the temporal evolution of cell state distributions and to identify dynamically important cell states, such as fate decision states in differentiation. However, these technologies are destructive, and require analysis approaches that temporally map between cell state distributions across time points. Current approaches to approximate the single-cell time series as a dynamical system suffer from too restrictive assumptions about the type of kinetics, or link together pairs of sequential measurements in a discontinuous fashion. We propose Dynamic Distribution Decomposition (DDD), an operator approximation approach to infer a continuous distribution map between time points. On the basis of single-cell snapshot time series data, DDD approximates the continuous time Perron-Frobenius operator by means of a finite set of basis functions. This procedure can be interpreted as a continuous time Markov chain over a continuum of states. By only assuming a memoryless Markov (autonomous) process, the types of dynamics represented are more general than those represented by other common models, e.g., chemical reaction networks, stochastic differential equations. Furthermore, we can a posteriori check whether the autonomy assumptions are valid by calculation of prediction error-which we show gives a measure of autonomy within the studied system. The continuity and autonomy assumptions ensure that the same dynamical system maps between all time points, not arbitrarily changing at each time point. We demonstrate the ability of DDD to reconstruct dynamically important cell states and their transitions both on synthetic data, as well as on mass cytometry time series of iPSC reprogramming of a fibroblast system. We use DDD to find previously identified subpopulations of cells and to visualise differentiation trajectories. Dynamic Distribution Decomposition allows interpretation of high-dimensional snapshot time series data as a low-dimensional Markov process, thereby enabling an interpretable dynamics analysis for a variety of biological processes by means of identifying their dynamically important cell states.


Assuntos
Reprogramação Celular/fisiologia , Biologia Computacional/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Análise de Célula Única/métodos , Algoritmos , Animais , Linhagem Celular , Cadeias de Markov , Camundongos
9.
Math Med Biol ; 36(1): 93-112, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29452382

RESUMO

Intra-tumour phenotypic heterogeneity limits accuracy of clinical diagnostics and hampers the efficiency of anti-cancer therapies. Dealing with this cellular heterogeneity requires adequate understanding of its sources, which is extremely difficult, as phenotypes of tumour cells integrate hardwired (epi)mutational differences with the dynamic responses to microenvironmental cues. The later comes in form of both direct physical interactions, as well as inputs from gradients of secreted signalling molecules. Furthermore, tumour cells can not only receive microenvironmental cues, but also produce them. Despite high biological and clinical importance of understanding spatial aspects of paracrine signaling, adequate research tools are largely lacking. Here, a partial differential equation (PDE)-based mathematical model is developed that mimics the process of cell ablation. This model suggests how each cell might contribute to the microenvironment by either absorbing or secreting diffusible factors, and quantifies the extent to which observed intensities can be explained via diffusion-mediated signalling. The model allows for the separation of phenotypic responses to signalling gradients within tumour microenvironments from the combined influence of responses mediated by direct physical contact and hardwired (epi)genetic differences. The method is applied to a multi-channel immunofluorescence in situ hybridisation (iFISH)-stained breast cancer histological specimen, and correlations are investigated between: HER2 gene amplification, HER2 protein expression and cell interaction with the diffusible microenvironment. This approach allows partial deconvolution of the complex inputs that shape phenotypic heterogeneity of tumour cells and identifies cells that significantly impact gradients of signalling molecules.


Assuntos
Modelos Biológicos , Comunicação Parácrina/fisiologia , Microambiente Tumoral/fisiologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/fisiopatologia , Linhagem Celular Tumoral , Simulação por Computador , Feminino , Amplificação de Genes , Técnicas Histológicas , Humanos , Hibridização in Situ Fluorescente , Conceitos Matemáticos , Mutação , Comunicação Parácrina/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Transdução de Sinais/fisiologia , Microambiente Tumoral/genética
10.
Phys Rev E ; 96(1-1): 012301, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29347066

RESUMO

We consider evolving networks in which each node can have various associated properties (a state) in addition to those that arise from network structure. For example, each node can have a spatial location and a velocity, or it can have some more abstract internal property that describes something like a social trait. Edges between nodes are created and destroyed, and new nodes enter the system. We introduce a "local state degree distribution" (LSDD) as the degree distribution at a particular point in state space. We then make a mean-field assumption and thereby derive an integro-partial differential equation that is satisfied by the LSDD. We perform numerical experiments and find good agreement between solutions of the integro-differential equation and the LSDD from stochastic simulations of the full model. To illustrate our theory, we apply it to a simple model for osteocyte network formation within bones, with a view to understanding changes that may take place during cancer. Our results suggest that increased rates of differentiation lead to higher densities of osteocytes, but with a smaller number of dendrites. To help provide biological context, we also include an introduction to osteocytes, the formation of osteocyte networks, and the role of osteocytes in bone metastasis.

11.
Phys Rev E ; 94(1-1): 012104, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27575074

RESUMO

Lévy walks define a fundamental concept in random walk theory that allows one to model diffusive spreading faster than Brownian motion. They have many applications across different disciplines. However, so far the derivation of a diffusion equation for an n-dimensional correlated Lévy walk remained elusive. Starting from a fractional Klein-Kramers equation here we use a moment method combined with a Cattaneo approximation to derive a fractional diffusion equation for superdiffusive short-range auto-correlated Lévy walks in the large time limit, and we solve it. Our derivation discloses different dynamical mechanisms leading to correlated Lévy walk diffusion in terms of quantities that can be measured experimentally.

12.
Phys Rev E ; 94(1-1): 012129, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27575098

RESUMO

Group-level behavior of particles undergoing a velocity-jump process with hard-sphere interactions is investigated. We derive N-particle transport equations that include the possibility of collisions between particles and apply different approximation techniques to get expressions for the dependence of the collective diffusion coefficient on the number of particles and their diameter. The derived approximations are compared with numerical results obtained from individual-based simulations. The theoretical results compare well with Monte Carlo simulations providing the excluded-volume fraction is small.

13.
Bull Math Biol ; 77(7): 1213-36, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26060098

RESUMO

There are various cases of animal movement where behaviour broadly switches between two modes of operation, corresponding to a long-distance movement state and a resting or local movement state. Here, a mathematical description of this process is formulated, adapted from Friedrich et al. (Phys Rev E, 74:041103, 2006b). The approach allows the specification any running or waiting time distribution along with any angular and speed distributions. The resulting system of integro-partial differential equations is tumultuous, and therefore, it is necessary to both simplify and derive summary statistics. An expression for the mean squared displacement is derived, which shows good agreement with experimental data from the bacterium Escherichia coli and the gull Larus fuscus. Finally, a large time diffusive approximation is considered via a Cattaneo approximation (Hillen in Discrete Continuous Dyn Syst Ser B, 5:299-318, 2003). This leads to the novel result that the effective diffusion constant is dependent on the mean and variance of the running time distribution but only on the mean of the waiting time distribution.


Assuntos
Fenômenos Fisiológicos Bacterianos , Aves/fisiologia , Migração Animal/fisiologia , Animais , Charadriiformes/fisiologia , Simulação por Computador , Escherichia coli/fisiologia , Conceitos Matemáticos , Modelos Biológicos , Movimento/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...