Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(8): 754, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39031225

RESUMO

In the contemporary landscape, the reuse of wastewater holds paramount significance. Concurrently, wastewater carries an array of pollutants encompassing chemical dyes and heavy metals. This study delves into the potential of Tamarix aphylla (TA) and Eucalyptus camaldulensis (EC) species for mitigating heavy metals in soil and eliminating methylene blue dye (MB) from wastewater. The research begins with assessing the dye adsorption process, considering pivotal factors such as initial pH, adsorbent dosage, initial dye concentration, and contact time. Outcomes reveal EC's superiority in dye removal compared to TA. As a bioremediation agent, EC exhibits a 90.46% removal efficacy for MB within 15 min, with pH 7.0 as the operative condition. Equilibrium analysis employs Temkin (T), Freundlich (F), and Langmuir (L) isotherms, revealing an excellent fit with the L isotherm model. The study delves further by probing surface adsorption kinetics through pseudo-first-order (PFO) and pseudo-second-order (PSO) models. Furthermore, to discern the divergent impacts of EC and TA on soil heavy metal reduction, soil samples were collected from three distinct zones: an untouched control area, alongside areas where EC and TA were cultivated at the Yazd wastewater site in Iran. Heavy metal levels in the soil were meticulously assessed through rigorous measurement and statistical scrutiny. The findings spotlight TA-cultivated soil as having the highest levels across all examined factors. Ultimately, EC emerges as the superior contender, proficiently excelling in both MB eliminations from wastewater and heavy metal amelioration in the soil, positioning it as the preferred phytoremediation agent.


Assuntos
Biodegradação Ambiental , Eucalyptus , Metais Pesados , Azul de Metileno , Poluentes do Solo , Solo , Tamaricaceae , Águas Residuárias , Poluentes Químicos da Água , Eucalyptus/química , Metais Pesados/análise , Águas Residuárias/química , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Azul de Metileno/química , Solo/química , Adsorção , Eliminação de Resíduos Líquidos/métodos , Recuperação e Remediação Ambiental/métodos
2.
Int J Phytoremediation ; : 1-12, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775346

RESUMO

The growth of industrial activities, has led to a significant increase in the influx of color pollutants into the environment. Phytoremediation can play a crucial role in enhancing wastewater quality. Accordingly, this study sought to evaluate the effectiveness of Alhagi maurorum plant powder in removing Janus Green B (JGB) dye from aqueous solutions. The adsorbent's properties were characterized through Fourier-transform infrared spectroscopy. The study examined various parameters, including initial dye concentration (20-110 mg/L), adsorbent dosage (0.002-0.02 g), solution pH (2-10), and contact time (5-50 min). The experiments revealed that the maximum dye removal efficiency, 99.51%, was achieved under optimal conditions: pH 7, a contact time of 20 min, an adsorbent dosage of 0.01 g, and an initial dye concentration of 90 mg/L. The adsorption of JGB onto the adsorbent followed the Langmuir isotherm model, with a maximum adsorption capacity of 90.909 mg/g. The kinetic results supported a pseudo-second-order model for the adsorption process, with an R2 value of 0.9999. The calculated Gibbs free energy changes (ΔG°) at temperatures of 288, 298, 308, 318, and 328 K were found to be -5354.28, -5993.61, -6439.66, -7026.51, and -7932.05 kJ/mol, respectively, indicating the spontaneity of the adsorption process.


This study investigated the capabilities of Alhagi maurorum species for removing Janus Green B in wastewater, because A. maurorum is considered a weed in fields and can be found in abundance in desert areas. It is a low-cost and eco-friendly adsorbent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA