Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 30(Pt 4): 831-840, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37159290

RESUMO

FlexPES is a soft X-ray beamline on the 1.5 GeV storage ring at MAX IV Laboratory, Sweden, providing horizontally polarized radiation in the 40-1500 eV photon energy range and specializing in high-resolution photoelectron spectroscopy, fast X-ray absorption spectroscopy and electron-ion/ion-ion coincidence techniques. The beamline is split into two branches currently serving three endstations, with a possibility of adding a fourth station at a free port. The refocusing optics provides two focal points on each branch, and enables either focused or defocused beam on the sample. The endstation EA01 at branch A (Surface and Materials Science) is dedicated to surface- and materials-science experiments on solid samples at ultra-high vacuum. It is well suited not only to all flavours of photoelectron spectroscopy but also to fast (down to sub-minute) high-resolution X-ray absorption measurements with various detectors. Branch B (Low-Density Matter Science) has the possibility to study gas-phase/liquid samples at elevated pressures. The first endstation of this branch, EB01, is a mobile setup for various ion-ion and electron-ion coincidence techniques. It houses a versatile reaction microscope, which can be used for experiments during single-bunch or multi-bunch delivery. The second endstation, EB02, is based on a rotatable chamber with an electron spectrometer for photoelectron spectroscopy studies on primarily volatile targets, and a number of peripheral setups for sample delivery, such as molecular/cluster beams, metal/semiconductor nanoparticle beams and liquid jets. This station can also be used for non-UHV photoemission studies on solid samples. In this paper, the optical layout and the present performance of the beamline and all its endstations are reported.


Assuntos
Elétrons , Síncrotrons , Raios X , Radiografia , Laboratórios
2.
J Chem Phys ; 154(23): 234708, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34241256

RESUMO

The composition-dependent change in the work-function (WF) of binary silver-potassium nanoparticles has been studied experimentally by synchrotron-based x-ray photoelectron spectroscopy (PES) and theoretically using a microscopic jellium model of metals. The Ag-K particles with different K fractions were produced by letting a beam of preformed Ag particles pass through a volume with K vapor. The PES on a beam of individual non-supported Ag-K nanoparticles created in this way allowed a direct absolute measurement of their WF, avoiding several usual shortcomings of the method. Experimentally, the WF has been found to be very sensitive to K concentration: Already at low exposure, it decreased down to ≈2 eV-below the value of pure K. In the jellium modeling, considered for Ag-K nanoparticles, two principally different adsorption patterns were tested: without and with K diffusion. The experimental and calculation results together suggest that only efficient surface alloying of two metals, whose immiscibility was long-term textbook knowledge, could lead to the observed WF values.

3.
Dalton Trans ; 47(46): 16660-16667, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30426128

RESUMO

In Ag-Cu oxides possible to fabricate so far, superconductivity has not been detected, but high conductivity was. In the quest for superconductivity the demand is to create a high and peculiar copper-oxygen coordination. Such coordination makes it non-trivial to determine Cu oxidation states, which may be several and co-existing. Another reason for uncertainty is in oxygen deficiency typical for superconducting crystals. Finally, Cu oxidation is influenced by the other metals in the substance. For chemical fabrication the difficulty is to tune the relative abundances of elements in a fine way. Ag-Cu oxides have been also produced by reactive co-sputtering of Cu and Ag, but the composition with high Cu oxidation states necessary for high conductivity has not been realized. In the present work we have fabricated Ag-Cu-oxide nanoparticles containing Cu and Ag in high oxidation states actual for superconductivity. The fabrication includes reactive sputtering of Ag and Cu metals, their vapour oxidation and aggregation into nanoparticles. The ability to create different and high oxidation states, also co-existing, is demonstrated. The fabrication approach also allows overcoming the poor miscibility of Cu and Ag. The nanoparticle composition and the oxidation states could be determined due to an experimental arrangement in which photoelectron spectroscopy is applied to free nanoparticles in a beam in vacuum, what allows avoiding any contact of the particles to a substrate or atmosphere. The combination of the fabrication and characterization methods has proven to be a powerful approach when fine composition tuning and control are desirable.

4.
Phys Chem Chem Phys ; 19(36): 25158-25167, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28884174

RESUMO

Concentration dependent solvation of RbBr in freestanding sub-2 nm water clusters was studied using core level photoelectron spectroscopy with synchrotron radiation. Spectral features recorded from dilute to saturated clusters indicate that either solvent shared or contact ion pairs are present in increasing amount when the concentration exceeds 2 mol kg-1. For comparison, spectra from anhydrous RbBr clusters are also presented.

5.
Phys Chem Chem Phys ; 17(10): 7012-22, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25684564

RESUMO

In this paper we demonstrate how surface site specific experimental information can be obtained from free low nanometer scale clusters using photoelectron spectroscopy utilising synchrotron radiation. In addition, we show how it can be used to gain insight into the geometry and surface structure of the clusters. The present experiments were conducted on alkali metal halides, RbCl and CsCl, which were chosen as advantageous test cases due to their simple electronic and geometric structures. These heavy alkali metal salts provide additional clarity since the surface and bulk responses can be separated, which is not the case for clusters of lighter alkali metal salts. Computational chemical shift calculations and simple alkali halide cluster size modelling were used to interpret the experimental results.


Assuntos
Césio/química , Cloretos/química , Nanoestruturas/química , Rubídio/química , Tamanho da Partícula , Espectroscopia Fotoeletrônica , Termodinâmica
6.
J Chem Phys ; 141(8): 084302, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25173009

RESUMO

Core-shell-structured nanoalloy particles with an Al-dominated interior covered by few Yb monolayers have been fabricated using a vapor-aggregation method involving magnetron sputtering. The radially segregated structure of the Yb-Al nanoparticles has been disclosed by "on-the-fly" photoelectron spectroscopy monitoring of the nanoparticle beam in Yb 4f and Al 2p electron binding energy regions. Both, the binding energy values and the electron microscopy images taken on the deposited nanoparticles, allow estimating their dimensions to be in the 5-10 nm range. The photoelectron spectroscopy results suggest that in these nanoparticles no trivalent Yb--the typical case for the macroscopic Yb-Al alloy--is present. The oxidation of preformed Yb-Al nanoparticles was successfully attempted, leading to the appearance of divalent Yb surface oxide--in contrast to the bulk macroscopic Yb which is trivalent in the oxide. Our results suggest that at intermediate oxygen exposures "sandwich-like" nanoparticles of YbO/Yb/Al were synthesized. At higher O2 exposures, the oxygen seems to penetrate all the way to the Yb-Al interface. The results of the present study have to be considered when photonic applications of Yb-doped garnet nanoparticles are planned.


Assuntos
Ligas/química , Alumínio/química , Nanopartículas/química , Itérbio/química , Nanopartículas/ultraestrutura , Nanotecnologia , Oxirredução
7.
J Chem Phys ; 138(23): 234306, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23802959

RESUMO

The angular distribution of photoelectrons emitted from water clusters has been measured by linearly polarized synchrotron radiation of 40 and 60 eV photon energy. Results are given for the three outermost valence orbitals. The emission patterns are found more isotropic than for isolated molecules. While a simple scattering model is able to explain most of the deviation from molecular behavior, some of our data also suggest an intrinsic change of the angular distribution parameter. The angular distribution function was mapped by rotating the axis of linear polarization of the synchrotron radiation.

8.
J Chem Phys ; 138(4): 044301, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23387578

RESUMO

The solvation of alkali-halides in water clusters at nanoscale is studied by photoelectron spectroscopy using synchrotron radiation. The Na 2p, K 3p, Cl 2p, Br 3d, and I 4d core level binding energies have been measured for salt-containing water clusters. The results have been compared to those of alkali halide clusters and the dilute aqueous salt solutions. It is found that the alkali halides dissolve in small water clusters as ions.

9.
J Phys Chem A ; 116(49): 12104-11, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23157589

RESUMO

The connection between the electronic polarizability and the decrease of the system size from macroscopic solid to nanoscale clusters has been addressed in a combined experimental and model-calculation study. A beam of free neutral potassium chloride clusters has been probed using synchrotron-radiation-based photoelectron spectroscopy. The introduction of "effective" polarizability for chlorine, lower than that in molecules and dimers and decreasing with increasing coordination, has allowed us to significantly improve the agreement between the experimental electron binding energies and the electrostatic model predictions. Using the calculated site-specific binding energies, we have been able to assign the spectral details of the cluster response to the ionizing X-ray radiation, and to explain its change with cluster size. From our assignments we find that the higher-coordination face-atom responses in the K 3p spectra increase significantly with increasing cluster size relative to that of the edge atoms. The reasons behind the decrease of polarizability predicted earlier by ab initio calculations are discussed in terms of the limited mobility of the electron clouds caused by the interaction with the neighboring ions.

10.
J Chem Phys ; 136(20): 204504, 2012 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-22667568

RESUMO

The electronic structure of free aluminum clusters with ∼3-4 nm radius has been investigated using synchrotron radiation-based photoelectron and Auger electron spectroscopy. A beam of free clusters has been produced using a gas-aggregation source. The 2p core level and the valence band have been probed. Photoelectron energy-loss features corresponding to both bulk and surface plasmon excitation following photoionization of the 2p level have been observed, and the excitation energies have been derived. In contrast to some expectations, the loss features have been detected at energies very close to those of the macroscopic solid. The results are discussed from the point of view of metallic properties in nanoparticles with a finite number of constituent atoms.

11.
J Chem Phys ; 134(12): 124507, 2011 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-21456676

RESUMO

The free neutral nanoscale NaCl clusters have been produced in a beam and studied with x-ray photoelectron spectroscopy. High resolution spectra simultaneously containing cluster and molecular-monomer, featuring in both the valence and core-level Na 2p and Cl 2p regions, have been obtained. Cluster-level energy shifts of around 3 eV toward lower binding energy for Na 2p and ≈1 eV toward higher binding energy for Cl 2p relative to the monomer levels have been unambiguously established. To rationalize the core-level energy shifts of the nanoscale NaCl clusters, the ionic model taking into account all charge-charge and polarization interactions has been developed and implemented. A satisfactory agreement between the experimental and model results has been obtained. The model calculations have also shed additional light on the size- and site-specific cluster responses.

12.
J Am Chem Soc ; 131(21): 7264-71, 2009 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-19432425

RESUMO

Aqueous potassium chloride has been studied by synchrotron-radiation excited core-level photoelectron and Auger electron spectroscopy. In the Auger spectrum of the potassium ion, the main feature comprises the final states where two outer valence holes are localized on potassium. This spectrum exhibits also another feature at a higher kinetic energy which is related to final states where outer valence holes reside on different subunits. Through ab initio calculations for microsolvated clusters, these subunits have been assigned as potassium ions and the surrounding water molecules. The situation is more complicated in the Auger spectrum of the chloride anion. One-center and multicenter final states are present here as well but overlap energetically.

13.
J Chem Phys ; 128(4): 044317, 2008 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-18247959

RESUMO

Photofragmentation of argon clusters of average size ranging from 10 up to 1000 atoms is studied using soft x-ray radiation below the 2p threshold and multicoincidence mass spectroscopy technique. For small clusters (=10), ionization induces fast fragmentation with neutral emission imparting a large amount of energy. While the primary dissociation takes place on a picosecond time scale, the fragments undergo slow degradation in the spectrometer on a microsecond time scale. For larger clusters ( >or=100) we believe that we observe the fragmentation pattern of multiply charged species on a time-scale which lasts a few hundred nanoseconds. The reason for these slower processes is the large number of neutral atoms which act as an efficient cooling bath where the excess energy ("heat") dissipates among all degrees of freedom. Further degradation of the photoionic cluster in spectrometer then takes place on the microsecond time scale, similar to small clusters.

14.
J Chem Phys ; 123(19): 194301, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16321082

RESUMO

Photofragmentation of small argon clusters with size below ten atoms is reported. In this size range significant modifications from the electronic properties and geometry take place. When tuning the photon energy through the argon 2p edge, the fragmentation pattern is changed. Specifically, cation dimer production is enhanced at the 2p(32)-->4s resonance, while above the 2p edge almost complete atomization is observed. In both cases, the widths of the peaks in the mass spectra indicate that a large amount of kinetic energy is imparted to the fragment due to the formation of multiply charged clusters. A model based on "Coulomb explosion"-charge separation, simply resulting in a complete atomization of the cluster with no dependence on the photon energy-is insufficient to explain the observed photofragmentation of small clusters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA