Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 382(6667): 197-201, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824648

RESUMO

The role of chirality in determining the spin dynamics of photoinduced electron transfer in donor-acceptor molecules remains an open question. Although chirality-induced spin selectivity (CISS) has been demonstrated in molecules bound to substrates, experimental information about whether this process influences spin dynamics in the molecules themselves is lacking. Here we used time-resolved electron paramagnetic resonance spectroscopy to show that CISS strongly influences the spin dynamics of isolated covalent donor-chiral bridge-acceptor (D-Bχ-A) molecules in which selective photoexcitation of D is followed by two rapid, sequential electron-transfer events to yield D•+-Bχ-A•-. Exploiting this phenomenon affords the possibility of using chiral molecular building blocks to control electron spin states in quantum information applications.

2.
J Phys Chem A ; 125(35): 7633-7643, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34431674

RESUMO

Perylenediimides (PDIs) are important molecular building blocks that are being investigated for their applicability in optoelectronic technologies. Covalently linking multiple PDI acceptors at the 2,5,8,11 (headland) positions adjacent to the PDI carbonyl groups is reported to yield higher power conversion efficiencies in photovoltaic cells relative to PDI acceptors linked at the 1,6,7,12 (bay) positions. While the photophysical properties of PDIs linked via the bay positions have been investigated extensively, those linked at the headland positions have received far less attention. We showed previously that symmetry-breaking charge separation (SB-CS) in PDIs hold promise as a strategy for increasing photovoltaic efficiency. Here we use transient absorption and emission spectroscopies to investigate the competition between SB-CS, fluorescence, and internal conversion in three related PDI dimers linked at the headland positions with o-, m-, and p-phenylene moieties: o-PDI2, m-PDI2, and p-PDI2, respectively. It is found that o-PDI2 supports SB-CS yielding PDI•+-PDI•-, which is in equilibrium with the o-PDI2 first excited state in a polar solvent (CH2Cl2) while m-PDI2 and p-PDI2 exhibit accelerated internal conversion due to the motion of the linker along with subnanosecond intersystem crossing (ISC). Electronic coupling and structural dynamics are shown to play a significant role, with o-PDI2 being the only member of the series that exhibits significant through-bond interchromophore coupling. The pronounced o-PDI2 steric congestion prevents the free internal rotation that leads to rapid deactivation of the excited state in the other dimers.

3.
J Phys Chem Lett ; 11(18): 7569-7574, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32812766

RESUMO

Advances in quantum information science (QIS) require the development of new molecular materials to serve as microwave addressable qubits that can be read out optically. Laser photoexcitation of organic π-conjugated molecules often results in spin-polarized phosphorescent triplet states that can be readily observed and manipulated using time-resolved electron paramagnetic resonance (EPR) techniques. Photoexcitation of N-mesityl-1,8-naphthalimide (M-NMI) and its phosphorus analogues, 2-mesitylbenzoisophosphinoline (M-BIPD) and 2-mesitylbenzoisophosphinoline oxide (M-BIPDO) results in ultrafast spin-orbit charge-transfer intersystem crossing to form the corresponding phosphorescent triplet states M-3*NMI, M-3*BIPD and M-3*BIPDO. The ultrafast triplet formation dynamics, phosphorescence, and spin-polarized EPR spectra of these triplet states were examined. The most promising qubit candidate, M-3*BIPD, was examined using pulse-EPR to measure its spin relaxation times, and pulse electron-nuclear double resonance spectroscopy to perform a two-qubit CNOT gate using the phosphorus nuclear spin.

4.
J Org Chem ; 84(13): 8759-8765, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31187624

RESUMO

Supramolecular modulation of reduction potentials of two series of bis(pyridinium)alkane salts is described. Study of the encapsulation of bis(pyridinium)alkane guests within the CB[7] cavity revealed the critical influence of the linker length and the position of the heteroatom on the reduction potentials of encapsulated guests. CB[7] complexation of pyridinium salts induced reduction potential changes ranging between +50 and -430 mV. Noncovalent modulation of the electron-accepting ability of organic cations can be utilized in electron-transfer-initiated reactions.

5.
Org Lett ; 21(5): 1449-1452, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30763104

RESUMO

DNA damage induced by noncatalytic aerobic oxidation of pyridinocyanine dyes is described. The dyes are generated in situ during spontaneous oxidations of tetrakis- and bis( N-methylpyridin-4-ium)alkane salts. The mechanism of aerobic oxidation of the latter compound is proposed, and a rare direct catalyst-free transition from saturated alkane to a gem-diol is demonstrated. Thermal DNA oxidation by cyanine dyes has potential in ROS-based cancer treatment and biomedical research.


Assuntos
Alcanos/química , Carbocianinas/química , Carbocianinas/farmacologia , Dano ao DNA , Estrutura Molecular , Oxirredução
6.
Org Lett ; 20(5): 1279-1282, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29457459

RESUMO

The tetrapyridinium salt 1 was found to undergo quantitative air oxidation upon dissolving it in water. The corresponding alkene and the epoxide were found as the only products of the oxidation. A mechanism that involves an alkyl hydroperoxide intermediate 1″ undergoing a transformation that yields both products is proposed. Air oxidation of 1 shows the potential of the acceptor substituted alkanes to be used in the studies of mostly unknown direct epoxidation of single C-C bonds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...