Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hepatology ; 52(1): 278-90, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20578145

RESUMO

UNLABELLED: Hepatic accumulation of myofibroblastic hepatic stellate cells (MF-HSCs) is pivotal in the pathogenesis of cirrhosis. Two events are necessary for MF-HSCs to accumulate in damaged livers: transition of resident, quiescent hepatic stellate cells (Q-HSCs) to MF-HSCs and expansion of MF-HSC numbers through increased proliferation and/or reduced apoptosis. In this study, we identified two novel mediators of MF-HSC accumulation: Ras-related C3 botulinum toxin substrate 1 (Rac1) and Hedgehog (Hh). It is unclear whether Rac1 and Hh interact to regulate the accumulation of MF-HSCs. We evaluated the hypothesis that Rac1 promotes activation of the Hh pathway, thereby stimulating signals that promote transition of Q-HSCs into MF-HSCs and enhance the viability of MF-HSCs. Using both in vitro and in vivo model systems, Rac1 activity was manipulated through adenoviral vector-mediated delivery of constitutively active or dominant-negative rac1. Rac1-transgenic mice with targeted myofibroblast expression of a mutated human rac1 transgene that produces constitutively active Rac1 were also examined. Results in all models demonstrated that activating Rac1 in HSC enhanced Hh signaling, promoted acquisition/maintenance of the MF-HSC phenotype, increased MF-HSC viability, and exacerbated fibrogenesis. Conversely, inhibiting Rac1 with dominant-negative rac1 reversed these effects in all systems examined. Pharmacologic manipulation of Hh signaling demonstrated that profibrogenic actions of Rac1 were mediated by its ability to activate Hh pathway-dependent mechanisms that stimulated myofibroblastic transition of HSCs and enhanced MF-HSC viability. CONCLUSION: These findings demonstrate that interactions between Rac1 and the Hh pathway control the size of MF-HSC populations and have important implications for the pathogenesis of cirrhosis.


Assuntos
Fibroblastos/patologia , Proteínas Hedgehog/metabolismo , Células Estreladas do Fígado/patologia , Cirrose Hepática/patologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Células Estreladas do Fígado/metabolismo , Humanos , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Masculino , Fenótipo , Ratos , Ratos Sprague-Dawley , Proteínas rac1 de Ligação ao GTP/agonistas , Proteínas rac1 de Ligação ao GTP/genética
2.
Int J Cancer ; 126(6): 1378-89, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19642140

RESUMO

We previously found that the gene encoding the Myelin and Lymphocyte protein, MAL, was among the most highly expressed genes in serous ovarian cancers from short-term survivors (<3 years) relative to those of long-term survivors (>7 years). In the present study, we have found that this difference in expression is partially attributable to differences in DNA methylation at a specific region within the MAL promoter CpG island. While MAL was largely unmethylated at the transcription start site (Region 1; -48 to +73 bp) in primary serous ovarian cancers, methylation of an upstream region (Region 2; -452 to -266 bp) was inversely correlated with MAL transcription in the primary cancers (R = -0.463) and ovarian cancer cell lines (R = -0.444). Following treatment of the OVCA432 cell line with 5-azacytidine, methylation of Region 2 decreased from 73.3% to 34.7% (p = 0.007) while Region 1 was unaffected. This was accompanied by a 10-fold increase in MAL expression. Since MAL transcripts are elevated in tumors from short-term survivors, all of whom were treated with platinum-based therapy, MAL may have a role in cisplatin response. We therefore determined the 50% growth inhibitory dose of cisplatin in 30 ovarian cancer cell lines and compared this to MAL expression. MAL transcript levels were higher in the resistant ovarian cell lines (p = 0.04). MAL methylation status may therefore serve as a marker of platinum sensitivity while MAL protein may be a target for development of novel therapies aimed at enhancing sensitivity to platinum-based drugs in ovarian cancer.


Assuntos
Metilação de DNA , Proteínas de Membrana Transportadoras/genética , Proteínas da Mielina/genética , Neoplasias Ovarianas/genética , Regiões Promotoras Genéticas/genética , Proteolipídeos/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Azacitidina/farmacologia , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Células Epiteliais/patologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Dados de Sequência Molecular , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA/métodos , Sobreviventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...