Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Heliyon ; 10(12): e32808, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975186

RESUMO

For decades, animal models have been the standard approach in drug research and development, as they are required by regulations in the transition from preclinical to clinical trials. However, there is growing ethical and scientific concern regarding these trials, as 80 % of the therapeutic potential observed in pre-clinical studies are often unable to be replicated, despite demonstrating efficacy and safety. In response to this, Tissue Engineering has emerged as a promising alternative that enables the treatment of various diseases through the production of biological models for advanced biological assays or through the direct development of tissue repairs or replacements. One of the promising applications of Tissue Engineering is the development of three-dimensional (3D) models for in vitro tests, replacing the need for in vivo animal models. In this study, 3D skin equivalents (TSE) were produced and used as an in vitro model to test photobiostimulation using curcumin-loaded nanocapsules. Photodynamic biostimulation therapy uses photodynamic processes to generate small amounts of reactive oxygen species (ROS), which can activate important biological effects such as cell differentiation, modulation of inflammatory processes and contribution to cell regeneration. The PLGA nanocapsules (NC) used in the study were synthesized through a preformed polymer deposition method, exhibiting particle size <200 nm, Zeta potential >|30| and polydispersity index between 0.5 and 0.3. Atomic force microscopy analyzes confirmed that the particle size was <200 nm, with a spherical morphology and a predominantly smooth and uniform surface. The NC biocompatibility assay did not demonstrate cytotoxicity for the concentrations tested (2.5-25 µg mL-1).The in vitro release assay showed a slow and sustained release characteristic of the nanocapsules, and cellular uptake assays indicated a significant increase in cellular internalization of the curcumin-loaded nanostructure. Monolayer photobiostimulation studies revealed an increase in cell viability of the HDFn cell line (viability 134 %-228 %) for all LED fluences employed at λ = 450 nm (150, 300, and 450 mJ cm-2). Additionally, the scratch assays, monitoring in vitro scar injury, demonstrated more effective effects on cell proliferation with the fluence of 300 mJ cm-2. Staining of TSE with hematoxylin and eosin showed the presence of cells with different morphologies, confirming the presence of fibroblasts and keratinocytes. Immunohistochemistry using KI-67 revealed the presence of proliferating cells in TSE after irradiation with LED λ = 450 nm (150, 300, and 450 mJ cm-2).

2.
J Pharm Sci ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38705465

RESUMO

Chloraluminium phthalocyanine (ClAlPc) has potential therapeutic effect for the treatment of cancer; however, the molecule is lipophilic and may present self-aggregation which limits its clinical success. Thus, nanocarriers like liposomes can improve ClAlPc solubility, reduce off-site toxicity and increase circulation time. For this purpose, developing suitable liposomes requires the evaluation of different lipid compositions. Herein, we aimed to develop liposomes containing soy phosphatidylcholine (SPC), 1,2-distearoyl-sn-glycero- 3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPEPEG2000), cholesterol and oleic acid loaded with ClAlPc using the surface response methodology and the Box-Behnken design. Liposomes with particle size from 110.93 to 374.97 nm and PdI from 0.265 to 0.468 were obtained. The optimized formulation resulted in 69.09 % of ClAlPc encapsulated, with particle size and polydispersity index, respectively, at 153.20 nm and 0.309, providing stability and aggregation control. Atomic force microscopy revealed vesicles in a spherical or almost spherical shape, while the analyzes by Differential Scanning Calorimetry (DSC), Powder X-ray Diffraction (PXRD), and Fourier transform infrared spectroscopy (FTIR) suggested that the drug was adequately incorporated into the lipid bilayer of liposomes, in its amorphous state or molecularly dispersed. In vitro studies conducted in breast cancer cells (4T1) showed that liposome improved phototoxicity compared to the ClAlPc solution. ClAlPc-loaded liposomes also enhanced the production of ROS 3-fold compared to the ClAlPc solution. Finally, confocal microscopy and flow cytometry demonstrated the ability of the liposomes to enter cells and deliver the fluorescent ClAlPc photosensitizer with dose and time-dependent effects. Thus, this work showed that Box-Behnken factorial design was an effective strategy for optimizing formulation development. The obtained ClAlPc liposomes can be applied for photodynamic therapy in breast cancer cells.

3.
Pharmaceutics ; 16(4)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38675171

RESUMO

Cutaneous leishmaniasis (CL) is a neglected tropical disease. The treatment is restricted to drugs, such as meglumine antimoniate and amphotericin B, that exhibit toxic effects, high cost, long-term treatment, and limited efficacy. The development of new alternative therapies, including the identification of effective drugs for the topical and oral treatment of CL, is of great interest. In this sense, a combination of topical photodynamic therapy (PDT) with chloroaluminum phthalocyanine liposomes (Lip-ClAlPc) and the oral administration of a self-emulsifying drug delivery system containing fexinidazole (SEDDS-FEX) emerges as a new strategy. The aim of the present study was to prepare, characterize, and evaluate the efficacy of combined therapy with Lip-ClAlPc and SEDDS-FEX in the experimental treatment of Leishmania (Leishmania) major. Lip-ClAlPc and SEDDS-FEX were prepared, and the antileishmanial efficacy study was conducted with the following groups: 1. Lip-ClAlPc (0.05 mL); 2. SEDDS-FEX (50 mg/kg/day); 3. Lip-ClAlPc (0.05 mL)+SEDDS-FEX (50 mg/kg/day) combination; 4. FEX suspension (50 mg/kg/day); and 5. control (untreated). BALB/c mice received 10 sessions of topical Lip-ClAlPc on alternate days and 20 consecutive days of SEDDS-FEX or FEX oral suspension. Therapeutical efficacy was evaluated via the parasite burden (limiting-dilution assay), lesion size (mm), healing of the lesion, and histological analyses. Lip-ClAlPc and SEDDS-FEX presented physicochemical characteristics that are compatible with the administration routes used in the treatments. Lip-ClAlPc+SEDDS-FEX led to a significant reduction in the parasitic burden in the lesion and spleen when compared to the control group (p < 0.05) and the complete healing of the lesion in 43% of animals. The Lip-ClAlPc+SEDDS-FEX combination may be promising for the treatment of CL caused by L. major.

4.
Biofabrication ; 16(2)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38408383

RESUMO

'On-a-chip' technology advances the development of physiologically relevant organ-mimicking architecture by integrating human cells into three-dimensional microfluidic devices. This method also establishes discrete functional units, faciliting focused research on specific organ components. In this study, we detail the development and assessment of a convoluted renal proximal tubule-on-a-chip (PT-on-a-chip). This platform involves co-culturing Renal Proximal Tubule Epithelial Cells (RPTEC) and Human Umbilical Vein Endothelial Cells (HUVEC) within a polydimethylsiloxane microfluidic device, crafted through a combination of 3D printing and molding techniques. Our PT-on-a-chip significantly reduced high glucose level, exhibited albumin uptake, and simulated tubulopathy induced by amphotericin B. Remarkably, the RPTEC:HUVEC co-culture exhibited efficient cell adhesion within 30 min on microchannels functionalized with plasma, 3-aminopropyltriethoxysilane, and type-I collagen. This approach significantly reduced the required incubation time for medium perfusion. In comparison, alternative methods such as plasma and plasma plus polyvinyl alcohol were only effective in promoting cell attachment to flat surfaces. The PT-on-a-chip holds great promise as a valuable tool for assessing the nephrotoxic potential of new drug candidates, enhancing our understanding of drug interactions with co-cultured renal cells, and reducing the need for animal experimentation, promoting the safe and ethical development of new pharmaceuticals.


Assuntos
Células Epiteliais , Túbulos Renais Proximais , Animais , Humanos , Células Endoteliais da Veia Umbilical Humana , Técnicas de Cocultura , Túbulos Renais Proximais/metabolismo , Dispositivos Lab-On-A-Chip
5.
Analyst ; 149(4): 1221-1228, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38221877

RESUMO

Cancer-targeted nanotechnology has a new trend in the design and preparation of new materials with functions for imaging and therapeutic applications simultaneously. As a new type of carbon nanomaterial, the inherent core-shell structured carbon dots (CDs) can be designed to provide a modular nanoplatform for integration of bioimaging and therapeutic capabilities. Here, core-shell structured CDs are designed and synthesized from levofloxacin and arginine and named Arg-CDs, in which levofloxacin-derived chromophores with up-conversion fluorescence are densely packed into the carbon core while guanidine groups are located on the shell, providing nitric oxide (NO) for photodynamic therapy of tumors. Moreover, the chromophores in the carbon core irradiated by visible LED light generate large amounts of reactive oxygen species (ROSs) that will oxidize the guanidine groups located on the shell of the Arg-CDs and further increase the NO releasing capacity remarkably. The as-synthesized Arg-CDs show excellent biocompatibility, bright up-conversion fluorescence, and a light-controlled ROS & NO releasing ability, which can be a potential light-modulated nanoplatform to integrate bioimaging and therapeutic functionalities.


Assuntos
Neoplasias , Pontos Quânticos , Humanos , Óxido Nítrico , Carbono , Fluorescência , Levofloxacino , Neoplasias/patologia , Espécies Reativas de Oxigênio , Guanidinas/uso terapêutico , Pontos Quânticos/toxicidade
6.
Nat Prod Res ; : 1-8, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206896

RESUMO

This study evaluated the effects of chitosan nanoparticles loaded with epigallocatechin-3-gallate (EGCG) against Streptococcus mutans biofilm. EGCG-loaded chitosan (Nchi + EGCG) nanoparticles and Chitosan (Nchi) nanoparticles were prepared by ion gelation process and characterised regarding particle size, polydispersion index, zeta potential, and accelerated stability. S mutans biofilms were treated twice daily with NaCl 0.9% (negative control), Nchi, Nchi + EGCG, and chlorhexidine (CHX) 0.12% (positive control). After 67 h, the biofilms were evaluated for acidogenesis, bacterial viability and dry weight. Biofilm morphology and structure were analysed by scanning electron microscopy. The nanoformulations presented medium to short-term stability, size of 500 nm, and polydispersion index around 0.400. Treatments affected cell morphology and biofilm structure. However, no effects on microbial viability, biofilm dry weight, and acidogenesis were observed. Thus, the nanoformulations disassembled the biofilm matrix without affecting microbial viability, which makes them promising candidates for the development of dental caries preventive and therapeutic agents.

7.
Biochem Biophys Res Commun ; 690: 149311, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38016246

RESUMO

Carbon dots (CDs) are an emerging class of fluorescent quantum dot nanomaterials that have attracted considerable scientific attention for biomedical or bioimaging applications due to their physicochemical and biochemical properties. With the emergence of massive novel synthetic CDs applying to biomedical fields of science, evaluating their biosafety before any biological application is essential. However, there is no universal protocol or routine procedures for toxicity detection and biosafety assessment of CDs in general biological environments. Herein, we provide an ideal and fast operating system to detect the biotoxicity of CDs, which has been preliminary practiced. Briefly, the obtained CDs will be evaluated by in vitro cytotoxicity assay using cell counting kit-8, lactate dehydrogenase assay kit, and flow cytometry. Meanwhile, the model creature zebrafish is employed to perform in vivo evaluation by measuring body length, hatching rate, heart rate, and morphological observation. Our operating procedure condenses previous scattered biosafety detection methods into a rapid standard evaluation protocol that can be applied to early biotoxicity screening of CDs. This protocol will accelerate CDs biological exploitation and guide future industrialized biosafety assessment in large-scale applications.


Assuntos
Nanoestruturas , Pontos Quânticos , Animais , Carbono/toxicidade , Carbono/química , Peixe-Zebra , Pontos Quânticos/toxicidade , Pontos Quânticos/química , Corantes Fluorescentes/química
8.
Photodiagnosis Photodyn Ther ; 43: 103723, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37487809

RESUMO

Multi-charged nanoemulsions (NE) were designed to deliver Cannabidiol (CBD), Indocyanine green (ICG), and Protoporphyrin (PpIX) to treat glioblastoma (GBM) through Photodynamic Therapy (PDT). The phase-inversion temperature (PIT) method resulted in a highly stable NE that can be scaled easily, with a six-month shelf-life. We observed the quasi-spherical morphology of the nanoemulsions without any unencapsulated material and that 89% (± 5.5%) of the material was encapsulated. All physicochemical properties were within the expected range for a nanostructured drug delivery system, making these multi-charged nanoemulsions promising for further research and development. NE-PIC (NE-Protoporphyrin + Indocyanine + CBD) was easily internalized on GBM cells after three hours of incubation. Nanoemulsion (NE and NE-PIC) did not result in significant cytotoxicity, even for GBM or non-tumorigenic cell lines (NHF). Phototoxicity was significantly higher for the U87MG cell than the T98G cell when exposed to: visible (430 nm) and infrared (810 nm) laser light, with a difference of about 20%. From 50 mJ.cm-2, the viability of GBM cell lines decreases significantly, ranging from 65% to 85%. The NE-PIC was also effective for inhibiting cell proliferation into a 3D spheroidal GBM cell model, which is promising for mimicking the tumor cell environment. Irradiation at 810 nm was more effective in treating spheroid due to its deeper penetration in complex structures. NE-PIC has the potential as a drug delivery system for photoinactivation and photo diagnostic of GBM cell lines, taking advantage of the versatility of its active components.


Assuntos
Glioblastoma , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Protoporfirinas/metabolismo , Linhagem Celular Tumoral
9.
Front Microbiol ; 14: 1132781, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152758

RESUMO

Nanocarriers have been successfully used to solubilize, deliver, and increase the bioavailability of curcumin (CUR), but slow CUR release rates hinder its use as a topical photosensitizer in antimicrobial photodynamic therapy. A photo-responsive polymer (PRP) was designed for the light-triggered release of CUR with an effective light activation-dependent antimicrobial response. The characterization of the PRP was compared with non-responsive micelles comprising Pluronics™ P123 and F127. According to the findings, the PRP formed photo-responsive micelles in the nanometric scale (< 100 nm) with a lower critical micelle concentration (3.74 × 10-4 M-1, 5.8 × 10-4 M-1, and 7.2 × 10-6 M-1 for PRP, F127, P123, respectively, at 25°C) and higher entrapment efficiency of CUR (88.7, 77.2, and 72.3% for PRP, F127, and P123 micelles, respectively) than the pluronics evaluated. The PRP provided enhanced protection of CUR compared to P123 micelles, as demonstrated in fluorescence quenching studies. The light-triggered release of CUR from PRP occurred with UV light irradiation (at 355 nm and 25 mW cm-2) and a cumulative release of 88.34% of CUR within 1 h compared to 80% from pluronics after 36 h. In vitro studies showed that CUR-loaded PRP was non-toxic to mammal cell, showed inactivation of the pathogenic microorganisms Candida albicans, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus, and decreased biofilm biomass when associated with blue light (455 nm, 33.84 J/cm2). The findings show that the CUR-loaded PRP micelle is a viable option for antimicrobial activity.

10.
Int J Biol Macromol ; 242(Pt 1): 124647, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37146851

RESUMO

Glioblastoma (GBM) is the most common brain cancer characterized by aggressive and infiltrated tumors. For this, hybrid biopolymer-lipid nanoparticles coated with biopolymers such as chitosan and lipidic nanocarriers (LN) loaded with a photosensitizer (AlClPc) can be used for GBM photodynamic therapy. The chitosan-coated LN exhibited stable physicochemical characteristics and presented as an excellent lipid nanocarrier with highly efficiently encapsulated photosensitizer chloro-aluminum phthalocyanine (AlClPc). LN(AlClPc)Ct0.1% in the presence of light produced more reactive oxygen species and reduced brain tumor cell viability and proliferation. Confirm the effects of in vivo LN applications with photodynamic therapy confirmed that the total brain tumor area decreased without systemic toxicity in mice. These results suggest a promising strategy for future clinical applications to improve brain cancer treatment.


Assuntos
Neoplasias Encefálicas , Quitosana , Glioblastoma , Nanopartículas , Fotoquimioterapia , Animais , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Glioblastoma/tratamento farmacológico , Quitosana/uso terapêutico , Fotoquimioterapia/métodos , Nanopartículas/química , Neoplasias Encefálicas/tratamento farmacológico , Lipídeos , Linhagem Celular Tumoral
11.
J Mater Chem B ; 11(11): 2466-2477, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36843492

RESUMO

Autophagy is indispensable in normal cellular processes, yet detrimental to cancer treatment because it severely lowers the therapeutic efficiency. One of the keys to solve this problem may lie in lysosomes, which requires the rational design of nanomedicine that is capable of localizing and maintaining its efficacy in lysosomes. In this work, a facile and versatile nanoplatform based on manganese-doped graphene quantum dots (Mn-FGQDs) is developed for effective and precise photodynamic impairment of lysosomes. Specifically, the incorporation of Mn not only strengthens the generation capability of reactive oxygen species (ROS), but also facilitates its accumulation in lysosomes. Moreover, Mn-FGQDs are structurally robust and retain their high photodynamic efficiency in the lysosomal environment. On this basis, the light-triggered generation of ROS would primarily influence the function of lysosomes, leading to lysosome impairment and thereby effectively blocking the protective autophagy recycling. More impressively, a continuous increase in the oxidative stress level in lysosomes causes severe autophagy dysfunction, as revealed from an abnormal increase in autophagosomes and autolysosomes. This eventually results in autophagy-associated cancer cell death accompanied by the characteristics of apoptosis and ferroptosis. Overall, the present work paves a new way for cancer therapy via precise lysosome impairment induced autophagy dysfunction.


Assuntos
Grafite , Neoplasias , Pontos Quânticos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Manganês/farmacologia , Grafite/farmacologia , Apoptose , Autofagia , Neoplasias/patologia , Lisossomos/metabolismo
12.
Lasers Med Sci ; 38(1): 50, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36689037

RESUMO

This study aimed to determine the inhibitory effects of green tea (Gt), EGCG, and nanoformulations containing chitosan (Nchi) and chitosan+green tea (Nchi+Gt) against Streptococcus mutans and Lactobacillus casei. In addition, the antibacterial effect of nanoformulations was evaluated directly on dentin after the selective removal of carious lesion. At first, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against S. mutans and L. casei isolates were investigated. In parallel, dentin specimens were exposed to S. mutans to induce carious lesions. Soft dentin was selectively removed by Er:YAG laser (n=33) or bur (n=33). Remaining dentin was biomodified with Nchi (n=11) or Gt+Nchi (n=11). Control group (n=11) did not receive any treatment. Dentin scraps were collected at three time points. Microbiological analyses were conducted and evaluated by agar plate counts. Gt at 1:32 dilution inhibited S. mutans growth while 1:16 was efficient against L. casei. EGCG at 1:4 dilution completely inhibited S. mutans and L. casei growth. Independently of the association with Gt, Nchi completely inhibited S. mutans at 1:4 dilution. For L. casei, different concentrations of Nchi (1:32) and Nchi+Gt (1:8) were required to inhibit cell growth. After selective carious removal, viability of S. mutans decreased (p<0.001), without difference between bur and Er:YAG laser (p>0.05). Treatment with Nchi and Nchi+Gt did not influence the microbial load of S. mutans on dentin (p>0.05). Although variations in concentrations were noticed, all compounds showed antibacterial activity against S. mutans and L. casei. Both bur and Er:YAG laser have effectively removed soft dentin and reduced S. mutans counts. Nanoformulations did not promote any additional antibacterial effect in the remaining dentin.


Assuntos
Quitosana , Cárie Dentária , Lasers de Estado Sólido , Humanos , Dentina , Quitosana/farmacologia , Suscetibilidade à Cárie Dentária , Antibacterianos/farmacologia , Streptococcus mutans
13.
Braz. j. oral sci ; 22: e236839, Jan.-Dec. 2023. ilus
Artigo em Inglês | LILACS, BBO - Odontologia | ID: biblio-1420769

RESUMO

Aim To evaluate the influence of the biomodification of erosive lesions with a chitosan nanoformulation containing green tea (NanoCsQ) on the clinical performance of a composite resin. Methods The study was performed in a split-mouth, randomized and double-blinded model with 20 patients with 40 erosive lesions. The patient's teeth were randomized into two groups (n=20) according to the surface treatment: 1) Without biomodification (control), and 2) Biomodification with NanoCsQ solution (experimental). The lesions were restored with adhesive (Tetric N-bond, Ivoclar) and composite resin (IPS Empress Direct, Ivoclar). The restorations were polished and 7 days (baseline), 6 months, and 12 months later were evaluated according to the United States Public Health Service (USPHS) modified criteria, using clinical exam and photographics. Data were analyzed by Friedman's and Wilcoxon signed-rank tests. Results No significant differences were found between the control and experimental groups (p=0.423), and also among the follow-up periods (baseline, six months, and 12 months) (p=0.50). Regarding the retention criteria, 90% of the restoration had an alpha score in the control group. Only 10% of the restorations without biomodification (control) had a score charlie at the 12-month follow-up. None of the patients reported post-operatory sensitivity. Conclusion The NanoCsQ solution did not negatively affect the performance of the composite resin restorations after 12 months.


Assuntos
Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Chá , Erosão Dentária , Resinas Compostas , Quitosana , Nanopartículas
14.
Nanoscale ; 15(1): 376-386, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36511884

RESUMO

In natural systems like photosynthetic organisms and photo-active enzymes, the spatial organization of chromophores is critical for efficient light harvesting and bio-catalysis. Inspired by nature, a novel modular nanoplatform with both biological imaging and therapeutic functions is constructed by taking advantage of the intrinsic core-shell structure of Fe-decorated carbon dots. Light-harvesting chromophores with deep-red photoluminescence are densely packed into the carbon core. Simultaneously, the atomically dispersed Fe3+ catalytic sites accounting for efficient conversion of H2O2 to ˙OH are discretely distributed on the shell. Precise control over their spatial distribution leads to the elegant integration and exciting interplay of the functional moieties. On the one hand, incorporating a catalysis shell enhances the emission of chromophores via synergistic shielding and rigidifying effects. On the other hand, visible light excitation of the chromophores significantly increases the catalytic activity and cytotoxicity against cancer cells, ascribed to the promotion of the charge transfer process. This nanoplatform exhibits excellent biocompatibility, bright red fluorescence, and light-regulated cytotoxicity for anti-cancer treatment, promising its applications in smart nanocatalytic medicines and efficient chemodynamic therapy.


Assuntos
Peróxido de Hidrogênio , Luz
15.
Molecules ; 27(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36500718

RESUMO

Photodynamic therapy (PDT) has become an emerging cancer treatment method. Choosing the photosensitizer (PS) compounds is one of the essential factors that can influence the PDT effect and action. Carbon dots (CDs) have shown great potential as photosensitizers in PDT of cancers due to their excellent biocompatibility and high generation of reactive oxygen species (ROS). Here, we used tea polyphenol as raw material for synthesized tea polyphenol carbon dots (T-CDs) that show dual emission bands of red and blue fluorescence and can efficiently generate hydroxyl radicals (OH) under mildly visible irradiation with a LED light (400-500 nm, 15 mW cm-2). The extremely low cytotoxicity and excellent biocompatibility of T-CDs without light irradiation were tested using MTT and hemolytic assay. Further, T-CDs have been shown by in vivo experiments, using a mouse breast cancer cell line (4T1) subcutaneously injected in the back of the mouse buttock as a model, to effectively inhibit the tumor cell proliferation in solid tumors and show an excellent PDT effect. In addition, pathological sections of the mice tissues after further treatment showed that the T-CDs had no apparent impact on the major organs of the mice and did not produce any side effect lesions. This work demonstrates that the as-synthesized T-CDs has the potential to be used as a PS in cancer treatment.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Carbono/farmacologia , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Neoplasias/tratamento farmacológico
16.
Pharmaceutics ; 14(11)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36365096

RESUMO

mTOR is a signaling pathway involved in cell survival, cell stress response, and protein synthesis that may be a key point in sepsis-induced cardiac dysfunction. Curcumin has been reported in vitro as an mTOR inhibitor compound; however, there are no studies demonstrating this effect in experimental sepsis. Thus, this study aimed to evaluate the action of curcumin on the mTOR pathway in the heart of septic mice. Free curcumin (FC) and nanocurcumin (NC) were used, and samples were obtained at 24 and 120 h after sepsis. Histopathological and ultrastructural analysis showed that treatments with FC and NC reduced cardiac lesions caused by sepsis. Our main results demonstrated that curcumin reduced mTORC1 and Raptor mRNA at 24 and 120 h compared with the septic group; in contrast, mTORC2 mRNA increased at 24 h. Additionally, the total mTOR mRNA expression was reduced at 24 h compared with the septic group. Our results indicate that treatment with curcumin and nanocurcumin promoted a cardioprotective response that could be related to the modulation of the mTOR pathway.

17.
Photodiagnosis Photodyn Ther ; 39: 102992, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35803557

RESUMO

This study investigated the ability of cholesterol-phosphatidylcholine liposomes loaded with chloride aluminum phthalocyanine (CL-AlClPc) to discriminate between healthy (MCF-10A) and neoplastic (MCF-7 and MDA-MB-231) breast cells for breast cancer diagnosis and treatment by photodynamic therapy (PDT) using a new drug delivery system consisting of CL-AlClPc. When PDT treatment was applied at an energy fluence of 700 mJ/cm², CL-AlClPc was more cytotoxic to neoplastic cells than to healthy breast cells because CL-AlClPc was better internalized by the tumor cells. An even higher fluorescence signal is expected for neoplastic cells during clinical treatment than for healthy cells, which will be useful for precise and targeted tumor cell detection. CL-AlClPc also facilitated better drug distribution and targeting of essential organelles inside the cells. This selectivity is critical for future in vivo diagnosis and treatment; it prevents side effects because it prioritizes tumor cells and tissues instead of healthy ones. The CL-AlClPc system designed herein had a small size (150 nm), low zeta potential (-6 mV), low polydispersity (0.16), high encapsulation rate efficiency (82.83%), and high shelf stability (12 months).


Assuntos
Neoplasias da Mama , Fotoquimioterapia , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Colesterol , Feminino , Humanos , Isoindóis , Lipossomos , Fosfatidilcolinas , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia
18.
Exp Cell Res ; 417(1): 113207, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35580698

RESUMO

Melanoma spheroid-loaded 3D skin models allow for the study of crucial tumor characteristics and factors at a superior level because the neoplastic cells are integrated into essential human skin components, permitting tumor-skin model communication. Herein, we designed a melanoma-containing artificial dermis by inserting multicellular tumor spheroids from the metastatic phase of WM 1617 melanoma cells into an artificial dermis. We cultured multicellular melanoma spheroids by hanging drop method (250 cells per drop) with a size of 420 µm in diameter after incubation for 14 days. These spheroids were integrated into the dermal equivalents that had been previously preparedwith a type-I collagen matrix and healthy fibroblasts. The melanoma spheroid cells invaded and proliferated in the artificial dermis. Spheroids treated with a 1.0 µmol/L aluminum chloride phthalocyanine nanoemulsion in the absence of light showed high cell viability. In contrast, under irradiation with visible red light (660 nm) at 25 J/cm2, melanoma cells were killed and the healthy tissue was preserved, indicating that photodynamic therapy is effective in such a model. Therefore, the 3D skin melanoma model has potential to promote research in full-thickness skin model targeting optimized preclinical assays.


Assuntos
Melanoma , Neoplasias Cutâneas , Derme , Humanos , Esferoides Celulares , Melanoma Maligno Cutâneo
19.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35455484

RESUMO

The misuse of many types of broad-spectrum antibiotics leads to increased antimicrobial resistance. As a result, the development of a novel antibacterial agent is essential. Photodynamic antimicrobial chemotherapy (PACT) is becoming more popular due to its advantages in eliminating drug-resistant strains and providing broad-spectrum antibacterial resistance. Carbon dots (CDs), zero-dimensional nanomaterials with diameters smaller than 10 nm, offer a green and cost-effective alternative to PACT photosensitizers. This article reviewed the synthesis methods of antibacterial CDs as well as the recent progress of CDs and their nanocomposites in photodynamic sterilization, focusing on maximizing the bactericidal impact of CDs photosensitizers. This review establishes the base for future CDs development in the PACT field.

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 275: 121178, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35366523

RESUMO

Pluronic/lipid mix promises stealth liposomes with long circulation time and long-term stability for pharmaceutical applications. However, the influence of Pluronics on several aspects of lipid membranes has not been fully elucidated. Herein it was described the effect of Pluronics on the structured water, alkyl chain conformation, and kinetic stability of dimyristoylphosphatidylcholine (DMPC) liposomes using interfacial and deeper fluorescent probes along with computational molecular modeling data. Interfacial water changed as a function of Pluronics' hydrophobicity with polypropylene oxide (PPO) anchoring the copolymers in the lipid bilayer. Pluronics with more than 30-40 PO units had facilitated penetration at the bilayer while shorter PPO favored a more interfacial interaction. Low Pluronic concentrations provided long-term stability of vesicles by steric effects of polyethylene oxide (PEO), but high amounts destabilized the vesicles as a sum of water-bridge cleavage at the polar head group and the reduced alkyl-alkyl interactions among the lipids. The high kinetic stability of Pluronic/DMPC vesicles is a proof-of-concept of its advantages and applicability in nanotechnology over conventional liposome-based pharmaceutical products for future biomedical applications.


Assuntos
Dimiristoilfosfatidilcolina , Poloxâmero , Bicamadas Lipídicas , Lipossomos , Polietilenoglicóis , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...