Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 13(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36836748

RESUMO

Among the many factors inducing prostate inflammation, bacterial contribution is potentially underrated according to the scientific community. Bacterial prostatitis is characterized by modifications of the prostatic microenvironment, mainly driven by the immune system. Macrophages play a major role in bacterial prostatitis, secreting a plethora of proinflammatory and chemoattractive cytokines and proteolytic enzymes able to degrade the ECM, so facilitating the invasion of other immune cells. Consequently, macrophages represent a link between bacterial infection and prostate inflammation, as well as being the main target of prostate anti-inflammatory drugs and dietary supplements. This study aims to investigate the effect of a formulation composed of active principles and a probiotic strain with a particular focus on the anti-inflammatory effect in an in vitro bacterial prostatitis model. The results obtained showed that the formulation reduces the inflammatory response of prostatic epithelium induced by bacterial infection. This effect is mediated by the modulation of activated macrophages. Analysis of the cytokines released highlights that the tested formulation is able to reduce the expression of key proinflammatory cytokines involved in the pathogenesis of prostate diseases, in particular prostate cancer, and represents a valuable tool to prevent bacterial prostatitis and ensure favorable prostate health.

2.
Pharmaceutics ; 14(9)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36145614

RESUMO

Lower Urinary Tract Symptoms (LUTs) in men are usually associated to benign prostatic hyperplasia (BPH), a non-malignant prostate enlargement. Unfortunately, BPH etiology is still unclear. Recent works highlighted a relevant inflammation role in BPH onset and development. Consequently, to complement the 5-α reductase (and α-adrenergic receptor agonists-based therapy, an anti-inflammatory therapy should be devised. To reduce potential adverse effects of multi-drug treatment, plant extract-based therapies are becoming increasingly common. Serenoa repens, the main phytotherapic treatment for BPH, is not sufficient to front the multi-faceted etiology of BPH. In response to this, a novel, multiple phytotherapic agents-based formulation, LENILUTS®, was developed. In the present work, we compared, using an in vitro approach, the prostatic safety and efficacy of LENILUTS® with a commercial formulation, based only on Serenoa repens, and a 5αR inhibitor, Dutasteride. Furthermore, preliminary in vitro experiments to investigate the active principles, bioaccessibility and bioavailability of LENILUTS® were performed. Our results showed a better prostatic safety and therapeutic efficacy of LENILUTS® compared to the commercial formulation and Dutasteride, with increased anti-inflammatory, and pro-apoptotic activity, and a stronger inhibitory effect on the release of the key enzyme 5αR and Prostatic-Specific Antigen (PSA). The limited bioaccessibility and bioavailability of the active principles of LENILUTS® were highlighted. Considering the results obtained, the LENILUTS® formulation is more promising for BPH and LUTs therapy compared to formulations based on Serenoa repens only, but further efforts should be made to improve the bioaccessibility and bioavailability of the active principles.

3.
Sci Rep ; 12(1): 9702, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690598

RESUMO

The human skin microbiota plays a key role in the maintenance of healthy skin, ensuring protection and biological barrier by competing with pathogens and by closely communicating with the immune system. The development of approaches which preserve or restore the skin microbiota represents a novel target for skincare applications. Prebiotics could be applied to balance almost any microbial community to achieve advantageous effects. However, information about their effectiveness as skin microbiota modulators is limited. The objective of the current study was to evaluate the effects of short chain fructo-oligosaccharides (scFOS) from sugar beet (DP 3-5), well-recognised prebiotics, on some representative bacterial strains of the skin microbiota. We measured the growth and competitive activity of these specific bacteria for the use of scFOS as energy source in minimal medium and in a reconstructed human epithelium (RHE) in vitro model. In minimal growth medium, scFOS promoted and sustained the growth of Staphylococcus epidermidis up to 24 h, considered a beneficial skin commensal bacterium, while inhibiting both Cutibacterium acnes and Staphylococcus aureus growth, regarded as opportunistic pathogens. S. epidermidis showed the highest colonization potential and 1% scFOS was effective in shifting the competition in favour of S. epidermidis with respect to C. acnes in the RHE model. This latter effect was observed following 24 h of exposure, suggesting a long-term effect of scFOS in a highly skin dynamic environment. Therefore, scFOS could be effectively implemented in skincare formulations for recovering skin microbiota homeostasis.


Assuntos
Microbiota , Prebióticos , Humanos , Oligossacarídeos/farmacologia , Prebióticos/análise , Propionibacterium acnes , Pele , Staphylococcus epidermidis
4.
Metabolites ; 12(5)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35629967

RESUMO

Iron deficiency is one of the most prevalent nutritional disorders worldwide. The standard treatment involves iron supplementation, but this task is challenging because of poor solubility and organoleptic issues. Moreover, the need to increase iron bioavailability represents a challenge for treating iron-related disorders. In this study, gastroresistance and iron intestinal absorption of an innovative granular formulation composed of ferric pyrophosphate, modified starch and phospholipids branded as Ferro Fosfosoma® was investigated. Gastroresistant properties were studied using standard protocols, and a bioaccessible fraction was obtained by exposing a food supplement to in vitro digestion. This fraction was used for investigating iron absorption in Caco-2 and human follicle-associated intestinal epithelium (FAE) models. Ferro Fosfosoma® showed an improved resistance to gastric digestion and higher intestinal absorption than ferric pyrophosphate salt used as a control in both models. In the FAE model, Ferro Fosfosoma® induces larger iron absorption than in the Caco-2 monolayer, most likely due to the transcytosis ability of M cells. The larger iron absorption in the Ferro Fosfosoma®-treated FAE model corresponds to higher ferritin level, proving physiological iron handling that was once delivered by granular formulation. Finally, the formulation did not induce any alterations in viability and barrier integrity. To conclude, Ferro Fosfosoma® favors iron absorption and ferritin expression, while preserving any adverse effects.

5.
Antioxidants (Basel) ; 11(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35453303

RESUMO

Cardiovascular diseases (CVDs) represent the leading cause of death worldwide, being responsible for about one third of deaths. Among CVDs, coronary artery diseases (CADs) are characterized by vascular endothelium dysfunction due to oxidative and inflammatory damages, the oxidation of circulating low-density lipoproteins (LDL) and high-density lipoproteins (HDL), and the production of ROS in the steatotic liver with the consequent increase of lipids and cholesterol. Together with CADs, heart failure (HF) represents another high-mortality rate CVD. A major risk factor for HF is hypertension that is accompanied by oxidative stress. Phytoextracts, rich in antioxidant and anti-inflammatory compounds, may have therapeutic value as they can interfere with several CVDs risk factors. In this work, a novel silver fir (Abies alba) bark extract, Abigenol®/AlbiPhenol®, was studied. First, Abigenol®/AlbiPhenol® cytotoxicity, bioaccessibility and bioavailability were evaluated by using an in vitro digestion model. Abigenol®/AlbiPhenol® was shown to be non-cytotoxic and showed good bioaccessibility. Then, by using in vitro hepatic, cardiac and vascular models, its antioxidant and anti-steatotic properties were assessed. Abigenol®/AlbiPhenol® showed an effective antioxidant action, and it was able to inhibit LDL and HDL oxidation, the main actors in atherosclerotic plaque formation. In steatotic conditions, Abigenol®/AlbiPhenol® induces decreased lipid and cholesterol accumulation in hepatocytes. In addition, in a cardiac model, the formulation reduced the activity of the hypertension-related angiotensin-converting enzyme (ACE). Altogether, these findings reveal a potential application of Abigenol®/AlbiPhenol® in the prevention and treatment of CVDs.

6.
Front Pharmacol ; 12: 726199, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34887750

RESUMO

Hepatic-related diseases, in particular hyperlipidemia and hypercholesterolemia, are a thorn on the side of the national health institutes around the globe. Indeed, liver lipid and cholesterol dysregulation could lead to atherosclerotic plaque formation and cardiovascular diseases. Currently, statin administration and monacolin K consumption are the main therapies proposed to counter this alarming connection, but relevant side effects are known. To overcome this issue, safe nutraceutical formulations and/or vegetal extracts, endowed with anticholesterolemic activity, could be instrumental in hypercholesterolemia prevention and treatment. In the present work, the anticholesterolemic efficacy of three vegetal extracts used in traditional medicine (artichoke, caigua, and fenugreek), their unique blend (ACFB), and the monacolin K-containing red yeast extract (RYR), was investigated with an in vitro approach based on hepatic cell line HepG2. The impact on cholesterol of the three extracts, their blend, and RYR were investigated by determining hepatocyte total and free cholesterol and bile acids biosynthesis. According to our results, the anticholesterolemic activity of the vegetal extracts was confirmed, and a novel choleretic activity of caigua extract was evidenced. ACFB showed to be safer than RYR while showing a similar effect on total and free cholesterol and bile acids synthesis compared to it. The anticholesterolemic activity of the blend was obtained with lower vegetal extract concentrations compared with the single vegetal extract, potentially indicating an additive effect between the extracts. In conclusion, the vegetal extracts and their blend, ACFB, are safe and are endowed with anticholesterolemic activity, potentially providing complementary therapies to the statin-based ones for hyperlipidemia and hypercholesterolemia-related complications.

7.
Molecules ; 25(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348818

RESUMO

Iron is a fundament micronutrient, whose homeostasis is strictly regulated. Iron deficiency anemia is among the most widespread nutritional deficiencies and its therapy, based on dietary supplement and drugs, may lead to severe side effects. With the aim of improving iron bioavailability while reducing iron oral therapy side effects, novel dietary supplements based on innovative technologies-microencapsulation, liposomes, sucrosomes-have been produced and marketed. In the present work, six iron dietary supplements for different therapeutic targets were compared in terms of bioaccessibility, bioavailability, and safety by using an integrated in vitro approach. For general-purpose iron supplements, ME + VitC (microencapsulated) showed a fast, burst intestinal iron absorption kinetic, which maintained iron bioavailability and ferritin expression constant over time. SS + VitC (sucrosomes), on the other side, showed a slower, time-dependent iron absorption and ferritin expression trend. ME + Folate (microencapsulated) showed a behavior similar to that of ME + VitC, albeit with a lower bioavailability. Among pediatric iron supplements, a time-dependent bioavailability increase was observed for LS (liposome), while PIC (polydextrose-iron complex) bioavailability is severely limited by its poor bioaccessibility. Finally, except for SS + VitC, no adverse effects on intestinal mucosa vitality and barrier integrity were observed. Considering obtained results and the different therapeutic targets, microencapsulation-based formulations are endowed with better performance compared to the other formulations. Furthermore, performances of microencapsulated products were obtained with a lower iron daily dose, limiting the potential onset of side effects.


Assuntos
Anemia Ferropriva/dietoterapia , Suplementos Nutricionais/análise , Composição de Medicamentos/métodos , Ferritinas/farmacocinética , Ferritinas/uso terapêutico , Absorção Intestinal/fisiologia , Disponibilidade Biológica , Células CACO-2 , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Humanos , Micronutrientes/uso terapêutico
8.
FASEB J ; 34(9): 12229-12238, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32681588

RESUMO

Silicon (Si) has numerous health properties. It is an element of the extracellular matrix; it is involved in collagen synthesis, bone mineralization, and immune system modulation; and it reduces metal accumulation in Alzheimer's disease and the risk of atherosclerosis. Given its poor intestinal absorption, Si is ingested in the form of orthosilicic acid (OSA) to promote its bioavailability. The aim of this work was to compare different commercial dietary supplements containing stabilized OSA to ascertain their bioaccessibility, bioavailability, and safety in a model of human intestinal epithelium. Biocompatibility with the glycocalyx was also investigated. Supplements containing collagen, maltodextrins, and choline as OSA stabilizers were analyzed. Bioaccessibility was explored by means of an in vitro digestive process. Bioavailability was investigated using a Caco2 cell line alone, or co-culturing with a HT29-MTX cell line. The safety of the compounds tested (in terms of intestinal epithelium integrity) was judged on the grounds of MTS assay, transepithelial electrical resistance, and apparent permeability. The three formulations were also tested in a Caco2 cell model of intestinal glycocalyx Si retention. The choline-formulated OSA formulation outperformed the maltodextrin-stabilized supplement, with a Si bioavailability about 14 times higher (P < .05). The choline-formulated OSA formulation increased cell permeability, with consequent intestinal epithelium disruption. The supplements' absorption and bioavailability (and harmfulness) differed considerably, depending on the OSA stabilizer involved. Of the three formulations tested, the collagen-formulated OSA represents the best Si dietary supplement.


Assuntos
Ácido Silícico/farmacocinética , Silício/farmacocinética , Disponibilidade Biológica , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Colágeno/química , Suplementos Nutricionais , Composição de Medicamentos , Glicocálix/metabolismo , Humanos , Absorção Intestinal , Mucosa Intestinal/efeitos dos fármacos , Ácido Silícico/química , Ácido Silícico/farmacologia , Silício/química
9.
Int J Mol Sci ; 20(3)2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30720739

RESUMO

The class of lipophilic compounds coming from vegetal source represents a perspective in the adjuvant treatment of several human diseases, despite their poor bioavailability in humans. These compounds are generally soluble in fats and poorly soluble in water. The major reason for the poor bioavailability of lipophilic natural compounds after oral uptake in humans is related to their reduced solubility in enteric water-based fluids, leading to an ineffective contact with absorbing epithelium. The main goal to ensure efficacy of such compounds is then creating technological conditions to deliver them into the first enteric tract as hydro-dispersible forms to maximize epithelial absorption. The present work describes and characterizes a new technological matrix (Lipomatrix, Labomar Research, Istrana, TV, Italy) based on a molten fats core in which Ascorbyl Palmitate is embedded, able to deliver lipophilic compounds in a well-dispersed and emulsified form once exposed to duodenal fluids. Authors describe and quantify Lipomatrix delivery of Serenoa repens oil through an innovative in vitro model of human gastro-enteric digestion, reporting results of its improved bioaccessibility, enteric absorption and efficacy compared with not formulated Serenoa repens oil-containing commercial products using in vitro models of human intestine and prostatic tissue.


Assuntos
Ácido Ascórbico/análogos & derivados , Sistemas de Liberação de Medicamentos , Absorção Intestinal , Óleos de Plantas/administração & dosagem , Disponibilidade Biológica , Linhagem Celular , Humanos , Óleos de Plantas/metabolismo , Óleos de Plantas/farmacocinética , Serenoa/química
10.
J Control Release ; 263: 4-17, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-28235590

RESUMO

The aim of this work was to rationally design and characterize nanocapsules (NCs) composed of an oily core and a polyarginine (PARG) shell, intended for oral peptide delivery. The cationic polyaminoacid, PARG, and the oily core components were selected based on their penetration enhancing properties. Insulin was adopted as a model peptide to assess the performance of the NCs. After screening numerous formulation variables, including different oils and surfactants, we defined a composition consisting of oleic acid, sodium deoxycholate (SDC) and Span 80. This selected NCs composition, produced by the solvent displacement technique, exhibited the following key features: (i) an average size of 180nm and a low polydispersity (0.1), (ii) a high insulin association efficacy (80-90% AE), (iii) a good colloidal stability upon incubation in simulated intestinal fluids (SIF, FaSSIF-V2, FeSSIF-V2), and (iv) the capacity to control the release of the associated insulin for >4h. Furthermore, using the Caco-2 model cell line, PARG nanocapsules were able to interact with the enterocytes, and reversibly modify the TEER of the monolayer. Both cell adhesion and membrane permeabilization could account for the pronounced transport of the NCs-associated insulin (3.54%). This improved interaction was also visualized by confocal fluorescent microscopy following oral administration of PARG nanocapsulesto mice. Finally, in vivo efficacy studies performed in normoglycemic rats showed a significant decrease in their plasma glucose levels after treatment. In conclusion, here we disclose key formulation elements for making possible the oral administration of peptides.


Assuntos
Portadores de Fármacos/administração & dosagem , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Absorção Intestinal , Nanocápsulas/administração & dosagem , Peptídeos/administração & dosagem , Animais , Glicemia/efeitos dos fármacos , Células CACO-2 , Portadores de Fármacos/química , Desenho de Fármacos , Liberação Controlada de Fármacos , Humanos , Hipoglicemiantes/química , Insulina/química , Mucosa Intestinal/metabolismo , Secreções Intestinais/química , Masculino , Nanocápsulas/química , Peptídeos/química , Ratos Sprague-Dawley
11.
Adv Drug Deliv Rev ; 106(Pt B): 381-401, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27544694

RESUMO

The fascinating properties of nanomaterials opened new frontiers in medicine. Nanocarriers are useful systems in transporting drugs to site-specific targets. The unique physico-chemical characteristics making nanocarriers promising devices to treat diseases may also be responsible for potential adverse effects. In order to develop functional nano-based drug delivery systems, efficacy and safety should be carefully evaluated. To date, no common testing strategy to address nanomaterial toxicological challenges has been generated. Different cell culture models are currently used to evaluate nanocarrier safety using conventional in vitro assays, but overall they have generated a huge amount of conflicting data. In this review we describe state-of-the-art approaches for in vitro testing of orally administered nanocarriers, highlighting the importance of developing harmonized and validated standard operating procedures. These procedures should be applied in a safe-by-design context with the aim to reduce and/or eliminate the uncertainties and risks associated with nanomedicine development.


Assuntos
Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/toxicidade , Técnicas In Vitro/métodos , Nanomedicina/métodos , Nanomedicina/normas , Nanoestruturas/administração & dosagem , Nanoestruturas/toxicidade , Animais , Técnicas de Cultura de Células/métodos , Portadores de Fármacos/efeitos adversos , Humanos , Nanoestruturas/efeitos adversos
12.
Toxicol In Vitro ; 29(7): 1736-44, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26145585

RESUMO

Works of art are constantly under physical, chemical and biological degradation, so constant restoration is required. Consolidation is an important step in restoration, and traditional approaches and materials have already shown their limitations. To solve these problems, new nanoparticle-based consolidants were developed. No information on their toxicity is yet available. In this work, we focused our attention on potential risks posed by three commercially available nanoparticle-based consolidants: silica (SiO2 NPs), silanized silica (silanized SiO2 NPs) and calcium hydroxide (nanolime) nanoparticle dispersions. Occupational exposure impact was tested on three in vitro models mimicking inhalation, dermal contact and systemic routes. While no toxic effects were observed for nanolime and silanized SiO2 NPs, bare SiO2 NPs showed a dose- and time-dependent damage in all considered models. Corrosion test on EpiSkin® revealed no viability reduction. Works of art degradation is partially due to microorganism activity. Consolidant antibacterial activity was evaluated on three representative bacterial strains. Silica NPs-based consolidants showed effect on specific bacterial groups, while no specificity was observed with nanolime. In conclusion, silanized SiO2 NPs-based consolidant emerged as the safest and bacteriologically active product. The different biological impact of bare and silanized SiO2 NPs highlights the importance of safe-by-design approach in developing nanoparticle-containing products.


Assuntos
Antibacterianos/toxicidade , Hidróxido de Cálcio/toxicidade , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Antibacterianos/farmacologia , Hidróxido de Cálcio/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Humanos , Técnicas In Vitro , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Dióxido de Silício/farmacologia , Pele/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
13.
Toxicon ; 64: 20-8, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23266309

RESUMO

α-latrotoxin and snake presynaptic phospholipases A2 neurotoxins target the presynaptic membrane of axon terminals of the neuromuscular junction causing paralysis. These neurotoxins display different biochemical activities, but similarly alter the presynaptic membrane permeability causing Ca(2+) overload within the nerve terminals, which in turn induces nerve degeneration. Using different methods, here we show that the calcium-activated proteases calpains are involved in the cytoskeletal rearrangements that we have previously documented in neurons exposed to α-latrotoxin or to snake presynaptic phospholipases A2 neurotoxins. These results indicate that calpains, activated by the massive calcium influx from the extracellular medium, target fundamental components of neuronal cytoskeleton such as spectrin and neurofilaments, whose cleavage is functional to the ensuing nerve terminal fragmentation.


Assuntos
Calpaína/farmacologia , Degeneração Neural/induzido quimicamente , Neurotoxinas/farmacologia , Fosfolipases A2/farmacologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Venenos de Aranha/farmacologia , Acrilatos/farmacologia , Animais , Animais Recém-Nascidos , Sinalização do Cálcio , Calpaína/antagonistas & inibidores , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Cultivadas , Citoesqueleto/efeitos dos fármacos , Dipeptídeos/farmacologia , Leupeptinas/farmacologia , Degeneração Neural/metabolismo , Proteínas de Neurofilamentos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Wistar , Venenos de Serpentes/enzimologia , Espectrina
15.
Toxicon ; 54(2): 138-44, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19341756

RESUMO

Snake presynaptic neurotoxins with phospholipase A2 (PLA2) activity cause degeneration of the neuromuscular junction. They induce depletion of synaptic vesicles and increase the membrane permeability to Ca(2+) which fluxes from the outside into the nerve terminal. Moreover, several toxins were shown to enter the nerve terminals of cultured neurons, where they may display their PLA2 activity on internal membranes. The relative contribution of these different actions in nerve terminal degeneration remains to be established. To gather information on this point, we have compared the effects of beta-bungarotoxin, taipoxin, notexin and textilotoxin with those of alpha-latrotoxin on the basis of the notion that this latter toxin is well known to cause massive Ca(2+) influx and exocytosis of synaptic vesicles. All the parameters analysed here, including calcium imaging, are very similar for the two classes of neurotoxins. This indicates that Ca(2+) overloading plays a major role in the degeneration of nerve terminals induced by the snake presynaptic neurotoxins.


Assuntos
Cálcio/metabolismo , Terminações Nervosas/metabolismo , Neurônios/metabolismo , Fosfolipases A2/toxicidade , Venenos de Serpentes/toxicidade , Venenos de Aranha/toxicidade , Animais , Células Cultivadas , Imunofluorescência , Imuno-Histoquímica , Neurônios Motores/efeitos dos fármacos , Terminações Nervosas/efeitos dos fármacos , Junção Neuromuscular/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Venenos de Serpentes/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...