Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Proteome Res ; 23(5): 1547-1558, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38619923

RESUMO

Circadian misalignment due to night work has been associated with an elevated risk for chronic diseases. We investigated the effects of circadian misalignment using shotgun protein profiling of peripheral blood mononuclear cells taken from healthy humans during a constant routine protocol, which was conducted immediately after participants had been subjected to a 3-day simulated night shift schedule or a 3-day simulated day shift schedule. By comparing proteomic profiles between the simulated shift conditions, we identified proteins and pathways that are associated with the effects of circadian misalignment and observed that insulin regulation pathways and inflammation-related proteins displayed markedly different temporal patterns after simulated night shift. Further, by integrating the proteomic profiles with previously assessed metabolomic profiles in a network-based approach, we found key associations between circadian dysregulation of protein-level pathways and metabolites of interest in the context of chronic metabolic diseases. Endogenous circadian rhythms in circulating glucose and insulin differed between the simulated shift conditions. Overall, our results suggest that circadian misalignment is associated with a tug of war between central clock mechanisms controlling insulin secretion and peripheral clock mechanisms regulating insulin sensitivity, which may lead to adverse long-term outcomes such as diabetes and obesity. Our study provides a molecular-level mechanism linking circadian misalignment and adverse long-term health consequences of night work.


Assuntos
Ritmo Circadiano , Inflamação , Insulina , Leucócitos Mononucleares , Humanos , Leucócitos Mononucleares/metabolismo , Insulina/metabolismo , Insulina/sangue , Inflamação/metabolismo , Inflamação/sangue , Masculino , Adulto , Jornada de Trabalho em Turnos , Feminino , Proteômica/métodos , Glicemia/metabolismo , Transdução de Sinais , Resistência à Insulina , Adulto Jovem
2.
Mil Med Res ; 10(1): 48, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853489

RESUMO

BACKGROUND: Physiological and biochemical processes across tissues of the body are regulated in response to the high demands of intense physical activity in several occupations, such as firefighting, law enforcement, military, and sports. A better understanding of such processes can ultimately help improve human performance and prevent illnesses in the work environment. METHODS: To study regulatory processes in intense physical activity simulating real-life conditions, we performed a multi-omics analysis of three biofluids (blood plasma, urine, and saliva) collected from 11 wildland firefighters before and after a 45 min, intense exercise regimen. Omics profiles post- versus pre-exercise were compared by Student's t-test followed by pathway analysis and comparison between the different omics modalities. RESULTS: Our multi-omics analysis identified and quantified 3835 proteins, 730 lipids and 182 metabolites combining the 3 different types of samples. The blood plasma analysis revealed signatures of tissue damage and acute repair response accompanied by enhanced carbon metabolism to meet energy demands. The urine analysis showed a strong, concomitant regulation of 6 out of 8 identified proteins from the renin-angiotensin system supporting increased excretion of catabolites, reabsorption of nutrients and maintenance of fluid balance. In saliva, we observed a decrease in 3 pro-inflammatory cytokines and an increase in 8 antimicrobial peptides. A systematic literature review identified 6 papers that support an altered susceptibility to respiratory infection. CONCLUSION: This study shows simultaneous regulatory signatures in biofluids indicative of homeostatic maintenance during intense physical activity with possible effects on increased infection susceptibility, suggesting that caution against respiratory diseases could benefit workers on highly physical demanding jobs.


Assuntos
Exercício Físico , Multiômica , Humanos , Exercício Físico/fisiologia , Citocinas
3.
Environ Int ; 169: 107531, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36137425

RESUMO

Harmful algal blooms plague bodies of freshwater globally. These blooms are often composed of outgrowths of cyanobacteria capable of producing the heptapeptide Microcystin-LR (MC-LR) which is a well-known hepatotoxin. Recently, MC-LR has been detected in aerosols generated from lake water. However, the risk for human health effects due to MC-LR inhalation exposure have not been extensively investigated. In this study, we exposed a fully differentiated 3D human airway epithelium derived from 14 healthy donors to MC-LR-containing aerosol once a day for 3 days. Concentrations of MC-LR ranged from 100 pM to 1 µM. Although there were little to no detrimental alterations in measures of the airway epithelial function (i.e. cell survival, tissue integrity, mucociliary clearance, or cilia beating frequency), a distinct shift in the transcriptional activity was found. Genes related to inflammation were found to be upregulated such as C-C motif chemokine 5 (CCL5; log2FC = 0.57, p = 0.03) and C-C chemokine receptor type 7 (CCR7; log2FC = 0.84, p = 0.03). Functionally, conditioned media from MC-LR exposed airway epithelium was also found to have significant chemo-attractive properties for primary human neutrophils. Additionally, increases were found in the concentration of secreted chemokine proteins in the conditioned media such as CCL1 (log2FC = 5.07, p = 0.0001) and CCL5 (log2FC = 1.02, p = 0.046). These results suggest that MC-LR exposure to the human airway epithelium is capable of inducing an inflammatory response that may potentiate acute or chronic disease.


Assuntos
Microcistinas , Água , Aerossóis/toxicidade , Meios de Cultivo Condicionados , Epitélio , Humanos , Toxinas Marinhas , Microcistinas/toxicidade , Receptores CCR7
4.
Nat Sci Sleep ; 14: 981-994, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35645584

RESUMO

Introduction: The circadian system coordinates daily rhythms in lipid metabolism, storage and utilization. Disruptions of internal circadian rhythms due to altered sleep/wake schedules, such as in night-shift work, have been implicated in increased risk of cardiovascular disease and metabolic disorders. To determine the impact of a night-shift schedule on the human blood plasma lipidome, an in-laboratory simulated shift work study was conducted. Methods: Fourteen healthy young adults were assigned to 3 days of either a simulated day or night-shift schedule, followed by a 24-h constant routine protocol with fixed environmental conditions, hourly isocaloric snacks, and constant wakefulness to investigate endogenous circadian rhythms. Blood plasma samples collected at 3-h intervals were subjected to untargeted lipidomics analysis. Results: More than 400 lipids were identified and quantified across 21 subclasses. Focusing on lipids with low between-subject variation per shift condition, alterations in the circulating plasma lipidome revealed generally increased mean triglyceride levels and decreased mean phospholipid levels after night-shift relative to day-shift. The circadian rhythms of triglycerides containing odd chain fatty acids peaked earlier during constant routine after night-shift. Regardless of shift condition, triglycerides tended to either peak or be depleted at 16:30 h, with chain-specific differences associated with the direction of change. Discussion: The simulated night-shift schedule was associated with altered temporal patterns in the lipidome. This may be premorbid to the elevated cardiovascular risk that has been found epidemiologically in night-shift workers.

5.
J Proteome Res ; 20(4): 2116-2121, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33703901

RESUMO

A generalized goal of many high-throughput data studies is to identify functional mechanisms that underlie observed biological phenomena, whether they be disease outcomes or metabolic output. Increasingly, studies that rely on multiple sources of high-throughput data (genomic, transcriptomic, proteomic, metabolomic) are faced with a challenge of summarizing the data to generate testable hypotheses. However, this requires a time-consuming process to evaluate numerous statistical methods across numerous data sources. Here, we introduce the leapR package, a framework to rapidly assess biological pathway activity using diverse statistical tests and data sources, allowing facile integration of multisource data. The leapR package with a user manual and example workflow is available for download from GitHub (https://github.com/biodataganache/leapR).


Assuntos
Proteômica , Software , Biologia Computacional , Genômica , Metabolômica
6.
J Pineal Res ; 70(3): e12726, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33638890

RESUMO

Circadian disruption has been identified as a risk factor for health disorders such as obesity, cardiovascular disease, and cancer. Although epidemiological studies suggest an increased risk of various cancers associated with circadian misalignment due to night shift work, the underlying mechanisms have yet to be elucidated. We sought to investigate the potential mechanistic role that circadian disruption of cancer hallmark pathway genes may play in the increased cancer risk in shift workers. In a controlled laboratory study, we investigated the circadian transcriptome of cancer hallmark pathway genes and associated biological pathways in circulating leukocytes obtained from healthy young adults during a 24-hour constant routine protocol following 3 days of simulated day shift or night shift. The simulated night shift schedule significantly altered the normal circadian rhythmicity of genes involved in cancer hallmark pathways. A DNA repair pathway showed significant enrichment of rhythmic genes following the simulated day shift schedule, but not following the simulated night shift schedule. In functional assessments, we demonstrated that there was an increased sensitivity to both endogenous and exogenous sources of DNA damage after exposure to simulated night shift. Our results suggest that circadian dysregulation of DNA repair may increase DNA damage and potentiate elevated cancer risk in night shift workers.


Assuntos
Biomarcadores Tumorais/genética , Transtornos Cronobiológicos/etiologia , Ritmo Circadiano , Dano ao DNA , Reparo do DNA , Neoplasias/etiologia , Jornada de Trabalho em Turnos/efeitos adversos , Transcriptoma , Ciclos de Atividade , Adulto , Transtornos Cronobiológicos/genética , Transtornos Cronobiológicos/fisiopatologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neoplasias/genética , Neoplasias/patologia , Medição de Risco , Fatores de Risco , Sono , Fatores de Tempo , Adulto Jovem
7.
Regul Toxicol Pharmacol ; 120: 104839, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33301868

RESUMO

Bisphenol A (BPA) is a chemical used to manufacture bisphenol A glycidyl methacrylate (BisGMA). BisGMA has been used for decades in dental composite restoratives, sealants, and adhesives. Based on published studies, exposure to low concentrations of BPA are possible from dental and orthodontic devices. The serum BPA concentrations arising from such devices and oral doses were predicted using a PBPK model in children and adult females based on 1) published extraction data for cured and uncured 3M ESPE Filtek Supreme Ultra Flowable, 3M ESPE Filtek Bulk Fill Restorative, and 3M ESPE Clinpro Sealant and 2) published 20% ethanol/water and water rinsate data following orthodontic application with 3M ESPE Transbond MIP Primer and 3M ESPE Transbond XT Adhesive. Predicted oral exposure to BPA arising from these dental and orthodontic devices is low (median <10 ng/treatment) and predicted serum BPA concentrations were also low (<10-4 nM). Even the maximum predicted exposure in this study (533.2 ng/treatment) yields a margin of exposure of 7.5 relative to the EFSA t-TDI (4 µg/kg-day) and is only 2.8% of the daily BPA exposure for the US population in a 58-kg woman (15,660 ng/day). Therefore, the exposure to BPA arising from the 3M ESPE dental and orthodontic devices evaluated in this study is negligible relative to daily BPA exposure in the general population and these potential BPA sources do not constitute a risk to patients.


Assuntos
Compostos Benzidrílicos/sangue , Resinas Compostas/administração & dosagem , Cimentos Dentários/farmacologia , Teste de Materiais/métodos , Modelos Biológicos , Fenóis/sangue , Selantes de Fossas e Fissuras/farmacologia , Adulto , Biomarcadores/sangue , Criança , Pré-Escolar , Resinas Compostas/metabolismo , Cimentos Dentários/metabolismo , Feminino , Previsões , Humanos , Masculino , Selantes de Fossas e Fissuras/metabolismo , Medição de Risco/métodos , Resultado do Tratamento
8.
Nanomaterials (Basel) ; 9(12)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835823

RESUMO

The overt hazard of carbon nanotubes (CNTs) is often assessed using in vitro methods, but determining a dose-response relationship is still a challenge due to the analytical difficulty of quantifying the dose delivered to cells. An approach to accurately quantify CNT doses for submerged in vitro adherent cell culture systems using UV-VIS-near-infrared (NIR) spectroscopy is provided here. Two types of multi-walled CNTs (MWCNTs), Mitsui-7 and Nanocyl, which are dispersed in protein rich cell culture media, are studied as tested materials. Post 48 h of CNT incubation, the cellular fractions are subjected to microwave-assisted acid digestion/oxidation treatment, which eliminates biological matrix interference and improves CNT colloidal stability. The retrieved oxidized CNTs are analyzed and quantified using UV-VIS-NIR spectroscopy. In vitro imaging and quantification data in the presence of human lung epithelial cells (A549) confirm that up to 85% of Mitsui-7 and 48% for Nanocyl sediment interact (either through internalization or adherence) with cells during the 48 h of incubation. This finding is further confirmed using a sedimentation approach to estimate the delivered dose by measuring the depletion profile of the CNTs.

9.
J Chem Inf Model ; 59(9): 4052-4060, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31430141

RESUMO

The current gold standard for unambiguous molecular identification in metabolomics analysis is comparing two or more orthogonal properties from the analysis of authentic reference materials (standards) to experimental data acquired in the same laboratory with the same analytical methods. This represents a significant limitation for comprehensive chemical identification of small molecules in complex samples. The process is time consuming and costly, and the majority of molecules are not yet represented by standards. Thus, there is a need to assemble evidence for the presence of small molecules in complex samples through the use of libraries containing calculated chemical properties. To address this need, we developed a Multi-Attribute Matching Engine (MAME) and a library derived in part from our in silico chemical library engine (ISiCLE). Here, we describe an initial evaluation of these methods in a blinded analysis of synthetic chemical mixtures as part of the U.S. Environmental Protection Agency's (EPA) Non-Targeted Analysis Collaborative Trial (ENTACT, Phase 1). For molecules in all mixtures, the initial blinded false negative rate (FNR), false discovery rate (FDR), and accuracy were 57%, 77%, and 91%, respectively. For high evidence scores, the FDR was 35%. After unblinding of the sample compositions, we optimized the scoring parameters to better exploit the available evidence and increased the accuracy for molecules suspected as present. The final FNR, FDR, and accuracy were 67%, 53%, and 96%, respectively. For high evidence scores, the FDR was 10%. This study demonstrates that multiattribute matching methods in conjunction with in silico libraries may one day enable reduced reliance on experimentally derived libraries for building evidence for the presence of molecules in complex samples.


Assuntos
Biologia Computacional/métodos , Simulação por Computador , Bibliotecas de Moléculas Pequenas/química , Algoritmos , Bibliotecas de Moléculas Pequenas/metabolismo
10.
Anal Chem ; 91(7): 4346-4356, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30741529

RESUMO

High-throughput, comprehensive, and confident identifications of metabolites and other chemicals in biological and environmental samples will revolutionize our understanding of the role these chemically diverse molecules play in biological systems. Despite recent technological advances, metabolomics studies still result in the detection of a disproportionate number of features that cannot be confidently assigned to a chemical structure. This inadequacy is driven by the single most significant limitation in metabolomics, the reliance on reference libraries constructed by analysis of authentic reference materials with limited commercial availability. To this end, we have developed the in silico chemical library engine (ISiCLE), a high-performance computing-friendly cheminformatics workflow for generating libraries of chemical properties. In the instantiation described here, we predict probable three-dimensional molecular conformers (i.e., conformational isomers) using chemical identifiers as input, from which collision cross sections (CCS) are derived. The approach employs first-principles simulation, distinguished by the use of molecular dynamics, quantum chemistry, and ion mobility calculations, to generate structures and chemical property libraries, all without training data. Importantly, optimization of ISiCLE included a refactoring of the popular MOBCAL code for trajectory-based mobility calculations, improving its computational efficiency by over 2 orders of magnitude. Calculated CCS values were validated against 1983 experimentally measured CCS values and compared to previously reported CCS calculation approaches. Average calculated CCS error for the validation set is 3.2% using standard parameters, outperforming other density functional theory (DFT)-based methods and machine learning methods (e.g., MetCCS). An online database is introduced for sharing both calculated and experimental CCS values ( metabolomics.pnnl.gov ), initially including a CCS library with over 1 million entries. Finally, three successful applications of molecule characterization using calculated CCS are described, including providing evidence for the presence of an environmental degradation product, the separation of molecular isomers, and an initial characterization of complex blinded mixtures of exposure chemicals. This work represents a method to address the limitations of small molecule identification and offers an alternative to generating chemical identification libraries experimentally by analyzing authentic reference materials. All code is available at github.com/pnnl .


Assuntos
Quimioinformática/métodos , Teoria da Densidade Funcional , Bibliotecas de Moléculas Pequenas/química , Aprendizado de Máquina , Modelos Químicos , Simulação de Dinâmica Molecular
11.
Food Chem Toxicol ; 125: 341-353, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30553876

RESUMO

Evaluating the biological significance of human-relevant exposures to environmental estrogens involves assessing the individual and total estrogenicity of endogenous and exogenous estrogens found in serum, for example from biomonitoring studies. We developed a method for this assessment by integrating approaches for (i) measuring total hormone concentrations by mass spectrometry (Fleck et al., 2018), (ii) calculating hormone bioavailable concentrations in serum and, (iii) solving multiple equilibria between estrogenic ligands and receptors, and (iv) quantitatively describing key elements of estrogen potency. The approach was applied to endogenous (E1, E2, E3, E4), environmental (BPA), and dietary Genistein (GEN), Daidzein (DDZ) estrogens measured in the serum of thirty pregnant women. Fractional receptor occupancy (FRO) based estrogenicity was dominated by E1, E2 and E3 (ER-α, 94.4-99.2% (median: 97.3%), ER-ß, 82.7-97.7% (median: 92.8%), as was the total response (TR), which included ligand specific differences in recruitment of co-activator proteins (RCA). The median FRO for BPA was at least five orders of magnitude lower than E1, E2 and E3, and three orders of magnitude lower than the fetal derived E4 and GEN and DDZ. BPA contributed less than 1/1000th of the normal daily variability in total serum estrogenicity in this cohort of pregnant women.


Assuntos
Poluentes Ambientais/sangue , Estrogênios não Esteroides/sangue , Receptores de Estrogênio/metabolismo , Adolescente , Adulto , Compostos Benzidrílicos/sangue , Compostos Benzidrílicos/metabolismo , Compostos Benzidrílicos/farmacocinética , Disponibilidade Biológica , Estudos de Coortes , Monitoramento Ambiental/métodos , Poluentes Ambientais/metabolismo , Poluentes Ambientais/farmacocinética , Estrenos/sangue , Estrenos/metabolismo , Estrenos/farmacocinética , Estrogênios não Esteroides/metabolismo , Estrogênios não Esteroides/farmacocinética , Feminino , Genisteína/sangue , Genisteína/metabolismo , Genisteína/farmacocinética , Humanos , Isoflavonas/sangue , Isoflavonas/metabolismo , Isoflavonas/farmacocinética , Ligantes , Modelos Biológicos , Fenóis/sangue , Fenóis/metabolismo , Fenóis/farmacocinética , Gravidez , Adulto Jovem
12.
Part Fibre Toxicol ; 15(1): 47, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518385

RESUMO

BACKGROUND: When suspended in cell culture medium, nano-objects composed of soluble metals such as silver can dissolve resulting in ion formation, altered particle properties (e.g. mass, morphology, etc.), and modulated cellular dose. Cultured cells are exposed not just to nanoparticles but to a complex, dynamic mixture of altered nanoparticles, unbound ions, and ion-ligand complexes. Here, three different cell types (RAW 264.7 macrophages and bone marrow derived macrophages from wild-type C57BL/6 J mice and Scavenger Receptor A deficient (SR-A(-/-)) mice) were exposed to 20 and 110 nm silver nanoparticles, and RAW 264.7 cells were exposed to freshly mixed silver ions, aged silver ions (ions incubated in cell culture medium), and ions formed from nanoparticle dissolution. The In Vitro Sedimentation, Diffusion, Dissolution, and Dosimetry Model (ISD3) was used to predict dose metrics for each exposure scenario. RESULTS: Silver nanoparticles, freshly mixed ions, and ions from nanoparticle dissolution were toxic, while aged ions were not toxic. Macrophages from SR-A(-/-) mice did not take up 20 nm silver nanoparticles as well as wild-types but demonstrated no differences in silver levels after exposure to 110 nm nanoparticles. Dose response modeling with ISD3 predicted dose metrics suggest that amount of ions in cells and area under the curve (AUC) of ion amount in cells are the most predictive of cell viability after nanoparticle and combined nanoparticle/dissolution-formed-ions exposures, respectively. CONCLUSIONS: Results of this study suggest that the unbound silver cation is the ultimate toxicant, and ions formed extracellularly drive toxicity after exposure to nanoparticles. Applying computational modeling (ISD3) to better understand dose metrics for soluble nanoparticles allows for better interpretation of in vitro hazard assessments.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Exposição por Inalação/efeitos adversos , Macrófagos/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Animais , Cátions , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tamanho da Partícula , Células RAW 264.7 , Receptores Depuradores Classe A/genética , Prata/administração & dosagem , Prata/química , Solubilidade , Propriedades de Superfície
13.
Environ Health Perspect ; 126(12): 125001, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30540492

RESUMO

BACKGROUND: The Life Cycle Initiative, hosted at the United Nations Environment Programme, selected human toxicity impacts from exposure to chemical substances as an impact category that requires global guidance to overcome current assessment challenges. The initiative leadership established the Human Toxicity Task Force to develop guidance on assessing human exposure and toxicity impacts. Based on input gathered at three workshops addressing the main current scientific challenges and questions, the task force built a roadmap for advancing human toxicity characterization, primarily for use in life cycle impact assessment (LCIA). OBJECTIVES: The present paper aims at reporting on the outcomes of the task force workshops along with interpretation of how these outcomes will impact the practice and reliability of toxicity characterization. The task force thereby focuses on two major issues that emerged from the workshops, namely considering near-field exposures and improving dose­response modeling. DISCUSSION: The task force recommended approaches to improve the assessment of human exposure, including capturing missing exposure settings and human receptor pathways by coupling additional fate and exposure processes in consumer and occupational environments (near field) with existing processes in outdoor environments (far field). To quantify overall aggregate exposure, the task force suggested that environments be coupled using a consistent set of quantified chemical mass fractions transferred among environmental compartments. With respect to dose­response, the task force was concerned about the way LCIA currently characterizes human toxicity effects, and discussed several potential solutions. A specific concern is the use of a (linear) dose­response extrapolation to zero. Another concern addresses the challenge of identifying a metric for human toxicity impacts that is aligned with the spatiotemporal resolution of present LCIA methodology, yet is adequate to indicate health impact potential. CONCLUSIONS: Further research efforts are required based on our proposed set of recommendations for improving the characterization of human exposure and toxicity impacts in LCIA and other comparative assessment frameworks. https://doi.org/10.1289/EHP3871.


Assuntos
Exposição Ambiental , Medição de Risco/métodos , Qualidade de Produtos para o Consumidor , Ecotoxicologia , Humanos , Modelos Teóricos , Exposição Ocupacional
14.
J Cheminform ; 10(1): 52, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367288

RESUMO

When using nuclear magnetic resonance (NMR) to assist in chemical identification in complex samples, researchers commonly rely on databases for chemical shift spectra. However, authentic standards are typically depended upon to build libraries experimentally. Considering complex biological samples, such as blood and soil, the entirety of NMR spectra required for all possible compounds would be infeasible to ascertain due to limitations of available standards and experimental processing time. As an alternative, we introduce the in silico Chemical Library Engine (ISiCLE) NMR chemical shift module to accurately and automatically calculate NMR chemical shifts of small organic molecules through use of quantum chemical calculations. ISiCLE performs density functional theory (DFT)-based calculations for predicting chemical properties-specifically NMR chemical shifts in this manuscript-via the open source, high-performance computational chemistry software, NWChem. ISiCLE calculates the NMR chemical shifts of sets of molecules using any available combination of DFT method, solvent, and NMR-active nuclei, using both user-selected reference compounds and/or linear regression methods. Calculated NMR chemical shifts are provided to the user for each molecule, along with comparisons with respect to a number of metrics commonly used in the literature. Here, we demonstrate ISiCLE using a set of 312 molecules, ranging in size up to 90 carbon atoms. For each, calculation of NMR chemical shifts have been performed with 8 different levels of DFT theory, and with solvation effects using the implicit solvent Conductor-like Screening Model. The DFT method dependence of the calculated chemical shifts have been systematically investigated through benchmarking and subsequently compared to experimental data available in the literature. Furthermore, ISiCLE has been applied to a set of 80 methylcyclohexane conformers, combined via Boltzmann weighting and compared to experimental values. We demonstrate that our protocol shows promise in the automation of chemical shift calculations and, ultimately, the expansion of chemical shift libraries.

15.
Curr Opin Toxicol ; 9: 8-13, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29736486

RESUMO

Over time, risk assessment has shifted from establishing relationships between exposure to a single chemical and a resulting adverse health outcome, to evaluation of multiple chemicals and disease outcomes simultaneously. As a result, there is an increasing need to better understand the complex mechanisms that influence risk of chemical and non-chemical stressors, beginning at their source and ending at a biological endpoint relevant to human or ecosystem health risk assessment. Just as the Adverse Outcome Pathway (AOP) framework has emerged as a means of providing insight into mechanism-based toxicity, the exposure science community has seen the recent introduction of the Aggregate Exposure Pathway (AEP) framework. AEPs aid in making exposure data applicable to the FAIR (i.e., findable, accessible, interoperable, and reusable) principle, especially by (1) organizing continuous flow of disjointed exposure information;(2) identifying data gaps, to focus resources on acquiring the most relevant data; (3) optimizing use and repurposing of existing exposure data; and (4) facilitating interoperability among predictive models. Herein, we discuss integration of the AOP and AEP frameworks and how such integration can improve confidence in both traditional and cumulative risk assessment approaches.

16.
Food Chem Toxicol ; 115: 511-522, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29548854

RESUMO

Biomonitoring of human exposure to estrogens most frequently focuses on environmental and dietary estrogens, and infrequently includes measures of exposure to potent endogenous estrogens present in serum. Pregnancy is a developmentally sensitive period during which "added" serum estrogenicity exceeding normal intra-individual daily variability may be of particular relevance. We made repeated measurements of serum concentrations of estrone (E1), estradiol (E2), estriol (E3), estetrol (E4), daidzein (DDZ), genistein (GEN) and bisphenol A (BPA) in thirty pregnant women using ultra-performance liquid chromatography coupled with tandem mass spectrometry detection (UPLC-MS/MS) and electrospray ionization (ESI). Serum E1, E2, and E3 concentrations varied significantly (coefficients of variation 9-10%) with broad ranges across the cohort: 1.61-85.1 nM, 9.09-69.7 nM, and 1.5-36.3 nM respectively. BPA (undetected, estimated from total exposure), DDZ and GEN concentrations were 1-5 orders of magnitude lower. The 24-h urinary elimination profiles of endogenous estrogens were each strongly correlated with their corresponding serum concentrations (Pearson's Correlation Coefficients of 0.83 (E1), 0.84 (E2) and 0.94 (E3)). A multivariate regression analysis produced equations for estimating serum concentrations of E1, E2, E3, E4, GEN and DDZ from urinary elimination rates and gestation period, an important step towards non-invasive biomonitoring for assessment of "added" estrogenicity during pregnancy.


Assuntos
Estrogênios/farmacologia , Adolescente , Adulto , Cromatografia Líquida/métodos , Estrogênios/sangue , Estrogênios/urina , Feminino , Humanos , Gravidez , Análise de Regressão , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Adulto Jovem
17.
Environ Sci Process Impacts ; 20(3): 428-436, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29465734

RESUMO

Advancements in measurement technologies and modeling capabilities continue to result in an abundance of exposure information, adding to that currently in existence. However, fragmentation within the exposure science community acts as an obstacle for realizing the vision set forth in the National Research Council's report on Exposure Science in the 21st century to consider exposures from source to dose, on multiple levels of integration, and to multiple stressors. The concept of an Aggregate Exposure Pathway (AEP) was proposed as a framework for organizing and integrating diverse exposure information that exists across numerous repositories and among multiple scientific fields. A workshop held in May 2016 followed introduction of the AEP concept, allowing members of the exposure science community to provide extensive evaluation and feedback regarding the framework's structure, key components, and applications. The current work briefly introduces topics discussed at the workshop and attempts to address key challenges involved in refining this framework. The resulting evolution in the AEP framework's features allows for facilitating acquisition, integration, organization, and transparent application and communication of exposure knowledge in a manner that is independent of its ultimate use, thereby enabling reuse of such information in many applications.


Assuntos
Ecologia/métodos , Exposição Ambiental/análise , Poluentes Ambientais , Modelos Teóricos , Ecossistema , Saúde Ambiental , Poluentes Ambientais/análise , Poluentes Ambientais/toxicidade , Humanos
18.
Part Fibre Toxicol ; 15(1): 6, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29368623

RESUMO

BACKGROUND: The development of particokinetic models describing the delivery of insoluble or poorly soluble nanoparticles to cells in liquid cell culture systems has improved the basis for dose-response analysis, hazard ranking from high-throughput systems, and now allows for translation of exposures across in vitro and in vivo test systems. Complimentary particokinetic models that address processes controlling delivery of both particles and released ions to cells, and the influence of particle size changes from dissolution on particle delivery for cell-culture systems would help advance our understanding of the role of particles and ion dosimetry on cellular toxicology. We developed ISD3, an extension of our previously published model for insoluble particles, by deriving a specific formulation of the Population Balance Equation for soluble particles. RESULTS: ISD3 describes the time, concentration and particle size dependent dissolution of particles, their delivery to cells, and the delivery and uptake of ions to cells in in vitro liquid test systems. We applied the model to calculate the particle and ion dosimetry of nanosilver and silver ions in vitro after calibration of two empirical models, one for particle dissolution and one for ion uptake. Total media ion concentration, particle concentration and total cell-associated silver time-courses were well described by the model, across 2 concentrations of 20 and 110 nm particles. ISD3 was calibrated to dissolution data for 20 nm particles as a function of serum protein concentration, but successfully described the media and cell dosimetry time-course for both particles at all concentrations and time points. We also report the finding that protein content in media affects the initial rate of dissolution and the resulting near-steady state ion concentration in solution for the systems we have studied. CONCLUSIONS: By combining experiments and modeling, we were able to quantify the influence of proteins on silver particle solubility, determine the relative amounts of silver ions and particles in exposed cells, and demonstrate the influence of particle size changes resulting from dissolution on particle delivery to cells in culture. ISD3 is modular and can be adapted to new applications by replacing descriptions of dissolution, sedimentation and boundary conditions with those appropriate for particles other than silver.


Assuntos
Macrófagos Alveolares/metabolismo , Modelos Biológicos , Nanopartículas/química , Nanopartículas/metabolismo , Prata/química , Prata/metabolismo , Animais , Técnicas de Cultura de Células , Linhagem Celular , Precipitação Química , Meios de Cultura/química , Difusão , Nanopartículas Metálicas/análise , Nanopartículas Metálicas/química , Camundongos , Nanopartículas/análise , Tamanho da Partícula , Prata/análise , Solubilidade , Propriedades de Superfície
19.
Arch Toxicol ; 92(1): 15-40, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29302712

RESUMO

Exposure assessment is a fundamental part of the risk assessment paradigm, but can often present a number of challenges and uncertainties. This is especially the case for process contaminants formed during the processing, e.g. heating of food, since they are in part highly reactive and/or volatile, thus making exposure assessment by analysing contents in food unreliable. New approaches are therefore required to accurately assess consumer exposure and thus better inform the risk assessment. Such novel approaches may include the use of biomarkers, physiologically based kinetic (PBK) modelling-facilitated reverse dosimetry, and/or duplicate diet studies. This review focuses on the state of the art with respect to the use of biomarkers of exposure for the process contaminants acrylamide, 3-MCPD esters, glycidyl esters, furan and acrolein. From the overview presented, it becomes clear that the field of assessing human exposure to process-related contaminants in food by biomarker monitoring is promising and strongly developing. The current state of the art as well as the existing data gaps and challenges for the future were defined. They include (1) using PBK modelling and duplicate diet studies to establish, preferably in humans, correlations between external exposure and biomarkers; (2) elucidation of the possible endogenous formation of the process-related contaminants and the resulting biomarker levels; (3) the influence of inter-individual variations and how to include that in the biomarker-based exposure predictions; (4) the correction for confounding factors; (5) the value of the different biomarkers in relation to exposure scenario's and risk assessment, and (6) the possibilities of novel methodologies. In spite of these challenges it can be concluded that biomarker-based exposure assessment provides a unique opportunity to more accurately assess consumer exposure to process-related contaminants in food and thus to better inform risk assessment.


Assuntos
Biomarcadores/análise , Exposição Dietética/análise , Contaminação de Alimentos/análise , Manipulação de Alimentos , Acroleína/sangue , Acroleína/química , Acroleína/urina , Acrilamida/sangue , Acrilamida/química , Acrilamida/urina , Animais , Furanos/sangue , Furanos/química , Furanos/urina , Humanos , Modelos Biológicos , Medição de Risco/métodos , alfa-Cloridrina/química , alfa-Cloridrina/urina
20.
Environ Sci Technol ; 51(17): 9458-9468, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28836766

RESUMO

Bioremediation uses soil microorganisms to degrade polycyclic aromatic hydrocarbons (PAHs) into less toxic compounds and can be performed in situ, without the need for expensive infrastructure or amendments. This review provides insights into the cancer risks associated with PAH-contaminated soils and places bioremediation outcomes in a context relevant to human health. We evaluated which bioremediation strategies were most effective for degrading PAHs and estimated the cancer risks associated with PAH-contaminated soils. Cancer risk was statistically reduced in 89% of treated soils following bioremediation, with a mean degradation of 44% across the B2 group PAHs. However, all 180 treated soils had postbioremediation cancer risk values that exceeded the U.S. Environmental Protection Agency (USEPA) health-based acceptable risk level (by at least a factor of 2), with 32% of treated soils exceeding recommended levels by greater than 2 orders of magnitude. Composting treatments were most effective at biodegrading PAHs in soils (70% average reduction compared with 28-53% for the other treatment types), which was likely due to the combined influence of the rich source of nutrients and microflora introduced with organic compost amendments. Ultimately, bioremediation strategies, in the studies reviewed, were unable to successfully remove carcinogenic PAHs from contaminated soils to concentrations below the target cancer risk levels recommended by the USEPA.


Assuntos
Biodegradação Ambiental , Neoplasias/epidemiologia , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes do Solo/metabolismo , Humanos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Medição de Risco , Solo , Poluentes do Solo/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...