Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 12(12): e0063323, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37982654

RESUMO

We report the complete genome sequence of Methylomonas sp. UP202 isolated from an urban waterway sediment in Singapore. The genome contains genes involved in methane, methanol, formaldehyde, and formate oxidation. It also contains genes utilizing various nitrogen sources such as nitrogen, nitrate, nitrite, urea, and ammonium.

2.
J Chem Ecol ; 47(2): 227-241, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33459999

RESUMO

The complex interaction between a higher organism and its resident gut flora is a subject of immense interest in the field of symbiosis. Many insects harbor a complex community of microorganisms in their gut. Larvae of Spodoptera littoralis, a lepidopteran pest, house a bacterial community that varies both spatially (along the length of the gut) and temporally (during the insect's life cycle). To monitor the rapid adaptation of microbes to conditions in the gut, a GFP-tagged reporter strain of E. mundtii, a major player in the gut community, was constructed. After early-instar S. littoralis larvae were fed with the tagged microbes, these were recovered from the larval fore- and hindgut by flow cytometry. The fluorescent reporter confirmed the persistence of E. mundtii in the gut. RNA-sequencing of the sorted bacteria highlighted various strategies of the symbiont's survival, including upregulated pathways for tolerating alkaline stress, forming biofilms and two-component signaling systems for quorum sensing, and resisting oxidative stress. Although these symbionts depend on the host for amino acid and fatty acids, differential regulation among various metabolic pathways points to an enriched lysine synthesis pathway of E. mundtii in the hindgut of the larvae.


Assuntos
Adaptação Fisiológica , Enterococcus/fisiologia , Spodoptera/microbiologia , Transcriptoma , Animais , Citometria de Fluxo , Trato Gastrointestinal/microbiologia , Concentração de Íons de Hidrogênio , Mucosa Intestinal/microbiologia , Ferro/metabolismo , Larva/microbiologia , Análise de Sequência de RNA
4.
Front Microbiol ; 7: 928, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27379058

RESUMO

The alkaline gut of Lepidopterans plays a crucial role in shaping communities of bacteria. Enterococcus mundtii has emerged as one of the predominant gut microorganisms in the gastrointestinal tract of the major agricultural pest, Spodoptera littoralis. Therefore, it was selected as a model bacterium to study its adaptation to harsh alkaline gut conditions in its host insect throughout different stages of development (larvae, pupae, adults, and eggs). To date, the mechanism of bacterial survival in insects' intestinal tract has been unknown. Therefore, we have engineered a GFP-tagged species of bacteria, E. mundtii, to track how it colonizes the intestine of S. littoralis. Three promoters of different strengths were used to control the expression of GFP in E. mundtii. The promoter ermB was the most effective, exhibiting the highest GFP fluorescence intensity, and hence was chosen as our main construct. Our data show that the engineered fluorescent bacteria survived and proliferated in the intestinal tract of the insect at all life stages for up to the second generation following ingestion.

5.
Sci Rep ; 6: 29505, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27389097

RESUMO

Microbes that live inside insects play critical roles in host nutrition, physiology, and behavior. Although Lepidoptera (butterflies and moths) are one of the most diverse insect taxa, their microbial symbionts are little-studied, particularly during metamorphosis. Here, using ribosomal tag pyrosequencing of DNA and RNA, we investigated biodiversity and activity of gut microbiotas across the holometabolous life cycle of Spodoptera littoralis, a notorious agricultural pest worldwide. Proteobacteria and Firmicutes dominate but undergo a structural "metamorphosis" in tandem with its host. Enterococcus, Pantoea and Citrobacter were abundant and active in early-instar, while Clostridia increased in late-instar. Interestingly, only enterococci persisted through metamorphosis. Female adults harbored high proportions of Enterococcus, Klebsiella and Pantoea, whereas males largely shifted to Klebsiella. Comparative functional analysis with PICRUSt indicated that early-instar larval microbiome was more enriched for genes involved in cell motility and carbohydrate metabolism, whereas in late-instar amino acid, cofactor and vitamin metabolism increased. Genes involved in energy and nucleotide metabolism were abundant in pupae. Female adult microbiome was enriched for genes relevant to energy metabolism, while an increase in the replication and repair pathway was observed in male. Understanding the metabolic activity of these herbivore-associated microbial symbionts may assist the development of novel pest-management strategies.


Assuntos
Bactérias/classificação , Proteínas de Insetos/genética , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos , Spodoptera/fisiologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Metabolismo Energético , Feminino , Microbioma Gastrointestinal , Regulação da Expressão Gênica no Desenvolvimento , Herbivoria , Larva/genética , Larva/microbiologia , Larva/fisiologia , Masculino , Metamorfose Biológica , Filogenia , RNA Ribossômico 16S/genética , Spodoptera/genética , Spodoptera/microbiologia
6.
Stand Genomic Sci ; 10: 76, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26457128

RESUMO

Thermus sp. strain CCB_US3_UF1 is a thermophilic bacterium of the genus Thermus, a member of the family Thermaceae. Members of the genus Thermus have been widely used as a biological model for structural biology studies and to understand the mechanism of microbial adaptation under thermal environments. Here, we present the complete genome sequence of Thermus sp. CCB_US3_UF1 isolated from a hot spring in Malaysia, which is the fifth member of the genus Thermus with a completely sequenced and publicly available genome (Genbank date of release: December 2, 2011). Thermus sp. CCB_US3_UF1 has the third largest genome within the genus. The complete genome comprises of a chromosome of 2.26 Mb and a plasmid of 19.7 kb. The genome contains 2279 protein-coding and 54 RNA genes. In addition, its genome revealed potential pathways for the synthesis of secondary metabolites (isoprenoid) and pigments (carotenoid).

7.
BMC Genomics ; 14: 75, 2013 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-23375136

RESUMO

BACKGROUND: Hevea brasiliensis, a member of the Euphorbiaceae family, is the major commercial source of natural rubber (NR). NR is a latex polymer with high elasticity, flexibility, and resilience that has played a critical role in the world economy since 1876. RESULTS: Here, we report the draft genome sequence of H. brasiliensis. The assembly spans ~1.1 Gb of the estimated 2.15 Gb haploid genome. Overall, ~78% of the genome was identified as repetitive DNA. Gene prediction shows 68,955 gene models, of which 12.7% are unique to Hevea. Most of the key genes associated with rubber biosynthesis, rubberwood formation, disease resistance, and allergenicity have been identified. CONCLUSIONS: The knowledge gained from this genome sequence will aid in the future development of high-yielding clones to keep up with the ever increasing need for natural rubber.


Assuntos
Genômica , Hevea/genética , Análise de Sequência , Alérgenos/genética , Resistência à Doença/genética , Evolução Molecular , Proteínas F-Box/genética , Genoma de Planta/genética , Haploidia , Hevea/imunologia , Hevea/metabolismo , Látex/metabolismo , Anotação de Sequência Molecular , Filogenia , Reguladores de Crescimento de Plantas/genética , Borracha/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Madeira/metabolismo
8.
J Bacteriol ; 194(5): 1240, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22328745

RESUMO

Thermus sp. strain CCB_US3_UF1, a thermophilic bacterium, has been isolated from a hot spring in Malaysia. Here, we present the complete genome sequence of Thermus sp. CCB_US3_UF1.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Fontes Termais/microbiologia , Thermus/genética , Thermus/isolamento & purificação , Malásia , Dados de Sequência Molecular , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...