Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 53(7): 1700-13, 2013 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-23725291

RESUMO

Recent efforts in the computational evaluation of the thermodynamic properties of water molecules have resulted in the development of promising new in silico methods to evaluate the role of water in ligand binding. These methods include WaterMap, SZMAP, GRID/CRY probe, and Grand Canonical Monte Carlo simulations. They allow the prediction of the position and relative free energy of the water molecule in the protein active site and the analysis of the perturbation of an explicit water network (WNP) as a consequence of ligand binding. We have for the first time extended these approaches toward the prediction of kinetics for small molecules and of relative free energy of binding with a focus on the perturbation of the water network and application to large diverse data sets. Our results support a qualitative correlation between the residence time of 12 related triazine adenosine A(2A) receptor antagonists and the number and position of high energy trapped solvent molecules. From a quantitative viewpoint, we successfully applied these computational techniques as an implicit solvent alternative, in linear combination with a molecular mechanics force field, to predict the relative ligand free energy of binding (WNP-MMSA). The applicability of this linear method, based on the thermodynamics additivity principle, did not extend to 375 diverse A(2A) receptor antagonists. However, a fast but effective method could be enabled by replacing the linear approach with a machine learning technique using probabilistic classification trees, which classified the binding affinity correctly for 90% of the ligands in the training set and 67% in the test set.


Assuntos
Antagonistas do Receptor A2 de Adenosina/metabolismo , Modelos Moleculares , Receptor A2A de Adenosina/metabolismo , Água/química , Antagonistas do Receptor A2 de Adenosina/química , Algoritmos , Cinética , Ligantes , Método de Monte Carlo , Probabilidade , Ligação Proteica , Conformação Proteica , Receptor A2A de Adenosina/química , Termodinâmica
2.
Mol Pharmacol ; 78(1): 94-104, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20413650

RESUMO

Recent years have witnessed the discovery of novel selective agonists of the M(1) muscarinic acetylcholine (ACh) receptor (mAChR). One mechanism invoked to account for the selectivity of such agents is that they interact with allosteric sites. We investigated the molecular pharmacology of two such agonists, 1-[3-(4-butyl-1-piperidinyl)propyl]-3,4-dihydro-2(1H)-quinolinone (77-LH-28-1) and 4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl] piperidine hydrogen chloride (AC-42), at the wild-type M(1) mAChR and three mutant M(1) mAChRs. Both agonists inhibited the binding of the orthosteric antagonist [(3)H]N-methyl scopolamine ([(3)H]NMS) in a manner consistent with orthosteric competition or high negative cooperativity. Functional interaction studies between 77-LH-28-1 and ACh also indicated a competitive mechanism. Dissociation kinetics assays revealed that the agonists could bind allosterically when the orthosteric site was prelabeled with [(3)H]NMS and that 77-LH-28-1 competed with the prototypical allosteric modulator heptane-1,7-bis-[dimethyl-3'-phthalimidopropyl]-ammonium bromide under these conditions. Mutation of the key orthosteric site residues Y(381)A (transmembrane helix 6) and W(101)A (transmembrane helix 3) reduced the affinity of prototypical orthosteric agonists but increased the affinity of the novel agonists. Divergent effects were also noted on agonist signaling efficacies at these mutants. We identified a novel mutation, F(77)I (transmembrane helix 2), which selectively reduced the efficacy of the novel agonists in mediating intracellular Ca(2+) elevation and phosphorylation of extracellular signal regulated kinase 1/2. Molecular modeling suggested a possible "bitopic" binding mode, whereby the agonists extend down into the orthosteric site as well as up toward extracellular receptor regions associated with an allosteric site. It is possible that this bitopic mode may explain the pharmacology of other selective mAChR agonists.


Assuntos
Agonistas Muscarínicos/farmacologia , Piperidinas/farmacologia , Quinolonas/farmacologia , Receptor Muscarínico M1/agonistas , Regulação Alostérica , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Mutagênese Sítio-Dirigida , Fosforilação , Ensaio Radioligante , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/metabolismo
3.
Mol Pharmacol ; 75(2): 331-41, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19001633

RESUMO

Point mutations and molecular modeling have been used to study the activation of the M(1) muscarinic acetylcholine receptor (mAChR) by the functionally selective agonists 4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine (AC-42), and 1-[3-(4-butyl-1-piperidinyl)propyl]-3,4-dihydro-2(1H)-quinolinone (77-LH-28-1), comparing them with N-desmethylclozapine (NDMC) and acetylcholine (ACh). Unlike NDMC and ACh, the activities of AC-42 and 77-LH-28-1 were undiminished by mutations of Tyr404 and Cys407 (transmembrane helix 7), although they were reduced by mutations of Tyr408. Signaling by AC-42, 77-LH-28-1, and NDMC was reduced by L102A and abolished by D105E, suggesting that all three may interact with transmembrane helix 3 at or near the binding site Asp105 to activate the M(1) mAChR. In striking contrast to NDMC and ACh, the affinities of AC-42 and 77-LH-28-1 were increased 100-fold by W101A, and their signaling activities were abolished by Y82A. Tyr82 and Leu102 contact the indole ring of Trp101 in a structural model of the M(1) mAChR. We suggest the hypothesis that the side chain of Trp101 undergoes conformational isomerization, opening a novel binding site for the aromatic side chain of the AC-42 analogs. This may allow the positively charged piperidine nitrogen of the ligands to access the neighboring Asp105 carboxylate to activate signaling following a vector within the binding site that is distinct from that of acetylcholine. NDMC does not seem to use this mechanism. Subtype-specific differences in the free energy of rotation of the side chain and indole ring of Trp101 might underlie the M(1) selectivity of the AC-42 analogs. Tryptophan conformational isomerization may open up new avenues in selective muscarinic receptor drug design.


Assuntos
Piperidinas/farmacologia , Receptor Muscarínico M1/agonistas , Animais , Técnicas de Cultura de Células , Cricetinae , Cricetulus , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/metabolismo , Receptores Muscarínicos/química , Receptores Muscarínicos/genética , Receptores Muscarínicos/metabolismo
4.
Mol Pharmacol ; 72(6): 1484-96, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17848601

RESUMO

Alanine substitution mutagenesis has been used to investigate residues that make up the roof and floor of the muscarinic binding pocket and regulate ligand access. We mutated the amino acids in the second extracellular loop of the M1 muscarinic acetylcholine receptor that are homologous to the cis-retinal contact residues in rhodopsin, the disulfide-bonded Cys178 and Cys98 that anchor the loop to transmembrane helix 3, the adjoining acidic residue Asp99, and the conserved aromatic residues Phe197 and Trp378 in the transmembrane domain. The effects on ligand binding, kinetics, and receptor function suggest that the second extracellular loop does not provide primary contacts for orthosteric ligands, including acetylcholine, but that it does contribute to microdomains that are important for the conformational changes that accompany receptor activation. Kinetic studies suggest that the disulfide bond between Cys98 and Cys178 may contribute to structures that regulate the access of positively charged ligands such as N-methyl scopolamine to the binding pocket. Asp99 may act as a gatekeeper residue to this channel. In contrast, the bulkier lipophilic ligand 3-quinuclidinyl benzilate may require breathing motions of the receptor to access the binding site. Trp378 is a key residue for receptor activation as well as binding, whereas Phe197 represents the floor of the N-methyl scopolamine binding pocket but does not interact with acetylcholine or 3-quinuclidinyl benzilate. Differences between the binding modes of N-methyl scopolamine, 3-quinuclidinyl benzilate, and acetylcholine have been modeled. Although the head groups of these ligands occupy overlapping volumes within the binding site, their side chains may follow significantly different directions.


Assuntos
Variação Genética/fisiologia , Receptores Muscarínicos/química , Receptores Muscarínicos/metabolismo , Animais , Sítios de Ligação/fisiologia , Células COS , Chlorocebus aethiops , Ligantes , Ligação Proteica/fisiologia , Ratos , Receptores Muscarínicos/genética , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...