Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(5): e17300, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38738563

RESUMO

Rhodoliths built by crustose coralline algae (CCA) are ecosystem engineers of global importance. In the Arctic photic zone, their three-dimensional growth emulates the habitat complexity of coral reefs but with a far slower growth rate, growing at micrometers per year rather than millimeters. While climate change is known to exert various impacts on the CCA's calcite skeleton, including geochemical and structural alterations, field observations of net growth over decade-long timescales are lacking. Here, we use a temporally explicit model to show that rising ocean temperatures over nearly 100 years were associated with reduced rhodolith growth at different depths in the Arctic. Over the past 90 years, the median growth rate was 85 µm year-1 but each °C increase in summer seawater temperature decreased growth by a mean of 8.9 µm (95% confidence intervals = 1.32-16.60 µm °C-1, p < .05). The decrease was expressed for rhodolith occurrences in 11 and 27 m water depth but not at 46 m, also having the shortest time series (1991-2015). Although increasing temperatures can spur plant growth, we suggest anthropogenic climate change has either exceeded the population thermal optimum for these CCA, or synergistic effects of warming, ocean acidification, and/or increasing turbidity impair rhodolith growth. Rhodoliths built by calcitic CCA are important habitat providers worldwide, so decreased growth would lead to yet another facet of anthropogenic habitat loss.


Assuntos
Mudança Climática , Rodófitas , Temperatura , Regiões Árticas , Rodófitas/crescimento & desenvolvimento , Rodófitas/fisiologia , Água do Mar/química
2.
Sci Rep ; 11(1): 14574, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272428

RESUMO

There is an increasing number of studies reporting microplastic (MP) contamination in the Arctic environment. We analysed MP abundance in samples from a marine Arctic ecosystem that has not been investigated in this context and that features a high biodiversity: hollow rhodoliths gouged by the bivalve Hiatella arctica. This bivalve is a filter feeder that potentially accumulates MPs and may therefore reflect MP contamination of the rhodolith ecosystem at northern Svalbard. Our analyses revealed that 100% of the examined specimens were contaminated with MP, ranging between one and 184 MP particles per bivalve in samples from two water depths. Polymer composition and abundance differed strongly between both water depths: samples from 40 m water depth showed a generally higher concentration of MPs and were clearly dominated by polystyrene, samples from 27 m water depth were more balanced in composition, mainly consisting of polyethylene, polyethylene terephthalate, and polypropylene. Long-term consequences of MP contamination in the investigated bivalve species and for the rhodolith bed ecosystem are yet unclear. However, the uptake of MPs may potentially impact H. arctica and consequently its functioning as ecosystem engineers in Arctic rhodolith beds.

3.
Sci Rep ; 10(1): 17748, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082388

RESUMO

Crustose coralline red algae (CCA) play a key role in the consolidation of many modern tropical coral reefs. It is unclear, however, if their function as reef consolidators was equally pronounced in the geological past. Using a comprehensive database on ancient reefs, we show a strong correlation between the presence of CCA and the formation of true coral reefs throughout the last 150 Ma. We investigated if repeated breakdowns in the potential capacity of CCA to spur reef development were associated with sea level, ocean temperature, CO2 concentration, CCA species diversity, and/or the evolution of major herbivore groups. Model results show that the correlation between the occurrence of CCA and the development of true coral reefs increased with CCA diversity and cooler ocean temperatures while the diversification of herbivores had a transient negative effect. The evolution of novel herbivore groups compromised the interaction between CCA and true reef growth at least three times in the investigated time interval. These crises have been overcome by morphological adaptations of CCA.


Assuntos
Antozoários/crescimento & desenvolvimento , Evolução Biológica , Recifes de Corais , Ecossistema , Herbivoria/fisiologia , Rodófitas/crescimento & desenvolvimento , Animais
4.
Plants (Basel) ; 9(9)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32847147

RESUMO

Coralline algae are one of the most diversified groups of red algae and represent a major component of marine benthic habitats from the poles to the tropics. This group was believed to be exclusively marine until 2016, when the first freshwater coralline algae Pneophyllum cetinaensis was discovered in the Cetina River, southern Croatia. While several studies investigated the element compositions of marine coralline algal thalli, no information is yet available for the freshwater species. Using XRD, LA-ICP-MS and nano indentation, this study presents the first living low-Mg calcite coralline algae with Mg concentrations ten times lower than is common for the average marine species. Despite the lower Mg concentrations, hardness and elastic modulus (1.71 ± 1.58 GPa and 29.7 ± 18.0 GPa, respectively) are in the same range as other marine coralline algae, possibly due to other biogenic impurities. When compared to marine species, Ba/Ca values were unusually low, even though Ba concentrations are generally higher in rivers than in seawater. These low values might be linked to different physical and chemical characteristics of the Cetina River.

5.
Sci Rep ; 4: 6972, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25382656

RESUMO

Rhodoliths are coralline red algal assemblages that commonly occur in marine habitats from the tropics to polar latitudes. They form rigid structures of high-magnesium calcite and have a good fossil record. Here I show that rhodoliths are ecosystem engineers in a high Arctic environment that increase local biodiversity by providing habitat. Gouged by boring mussels, originally solid rhodoliths become hollow ecospheres intensely colonised by benthic organisms. In the examined shelf areas, biodiversity in rhodolith-bearing habitats is significantly greater than in habitats without rhodoliths and hollow rhodoliths yield a greater biodiversity than solid ones. This biodiversity, however, is threatened because hollow rhodoliths take a long time to form and are susceptible to global change and anthropogenic impacts such as trawl net fisheries that can destroy hollow rhodoliths. Rhodoliths and other forms of coralline red algae play a key role in a plurality of environments and need improved management and protection plans.


Assuntos
Biodiversidade , Rodófitas , Ecossistema , Svalbard
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...