Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 12(25): 8755-8766, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34257875

RESUMO

Cobalt polyoxometalates (Co-POMs) have emerged as promising water oxidation catalysts (WOCs), with the added advantage of their molecular nature despite being metal oxide fragments. In comparison with metal oxides, that do not offer well-defined active surfaces, POMs have a controlled, discrete structure that allows for precise correlations between experiment and computational analyses. Thus, beyond highly active WOCs, POMs are also model systems to gain deeper mechanistic understanding on the oxygen evolution reaction (OER). The tetracobalt Weakley sandwich [CoII 4(H2O)2(B-α-PW9O34)2]10- (Co4-WS) has been one of the most extensively studied. We have compared its activity with that of the iron analog [FeIII 4(H2O)2(B-α-PW9O34)2]6- (Fe4-WS) looking for the electronic effects determining their activity. Furthermore, the effect of POM nuclearity was also investigated by comparison with the iron- and cobalt-monosubstituted Keggin clusters. Electrocatalytic experiments employing solid state electrodes containing the POMs and the corresponding computational calculations demonstrate that CoII-POMs display better WOC activity than the FeIII derivatives. Moreover, the activity of POMs is less influenced by their nuclearity, thus Weakley sandwich moieties show slightly improved WOC characteristics than Keggin clusters. In good agreement with the experimental data, computational methods, including pK a values, confirm that the resting state for Fe-POMs in neutral media corresponds to the S1 (FeIII-OH) species. Overall, the proposed reaction mechanism for Fe4-WS is analogous to that found for Co4-WS, despite their electronic differences. The potential limiting step is a proton-coupled electron transfer event yielding the active S2 (FeIV[double bond, length as m-dash]O) species, which receives a water nucleophilic attack to form the O-O bond. The latter has activation energies slightly higher than those computed for the Co-POMs, in good agreement with experimental observations. These results provide new insights for the accurate understanding of the structure-reactivity relationships of polyoxometalates in particular, and or metal oxides in general, which are of utmost importance for the development of new bottom-up synthetic approaches to design efficient, robust and non-expensive earth-abundant water oxidation catalysts.

2.
ACS Cent Sci ; 3(5): 372-380, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28573198

RESUMO

Nature employs a TyrZ-His pair as a redox relay that couples proton transfer to the redox process between P680 and the water oxidizing catalyst in photosystem II. Artificial redox relays composed of different benzimidazole-phenol dyads (benzimidazole models His and phenol models Tyr) with substituents designed to simulate the hydrogen bond network surrounding the TyrZ-His pair have been prepared. When the benzimidazole substituents are strong proton acceptors such as primary or tertiary amines, theory predicts that a concerted two proton transfer process associated with the electrochemical oxidation of the phenol will take place. Also, theory predicts a decrease in the redox potential of the phenol by ∼300 mV and a small kinetic isotope effect (KIE). Indeed, electrochemical, spectroelectrochemical, and KIE experimental data are consistent with these predictions. Notably, these results were obtained by using theory to guide the rational design of artificial systems and have implications for managing proton activity to optimize efficiency at energy conversion sites involving water oxidation and reduction.

3.
Dalton Trans ; 46(13): 4199-4208, 2017 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-28251203

RESUMO

The association of different metals in stable, well-defined molecular assemblies remains a great challenge of supramolecular chemistry. In such constructs, the emergence of synergism, or cooperative effects between the different metal centers is particularly intriguing. These effects can lead to uncommon reactivity or remarkable physico-chemical properties that are not otherwise achievable. For example, the association of alkaline or alkaline-earth cations and transition metals is pivotal for the activity of several biomolecules and human-made catalysts that carry out fundamental redox transformations (water oxidation, nitrogen reduction, water-gas shift reaction, etc.). In many cases the precise nature of the interactions between the alkaline-earth cations and the redox-active transition metals remains elusive due to the difficulty of building stable molecular heterometallic assemblies that associate transition metals and alkaline or alkaline-earth cations in a controlled way. In this work we present the rational design of porphyrin-based ligands possessing a second binding site for alkaline-earth cations above the porphyrin macrocycle primary complexation site. We demonstrate that by using a combination of crown ether and carboxylic acid substituents suitably positioned on the periphery of the porphyrin, bitopic ligands can be obtained. The binding of calcium, a typical alkaline-earth cation, by the newly prepared ligands has been studied in detail and we show that a moderately large binding constant can be achieved in protic media using ligands that possess some degree of structural flexibility. The formation of Zn-Ca assemblies discussed in this work is viewed as a stepping stone towards the assembly of well defined molecular transition metal-alkaline earth bimetallic centers using a versatile organic scaffold.

4.
Inorg Chem ; 56(4): 1999-2012, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28177256

RESUMO

The three polyoxotungstates [(NaOH2)2CoII2(As2W15O56)2]18- (1), [(NaOH2)(CoIIOH2)CoII2(As2W15O56)2]17- (2), and [(CoIIOH2)2CoII2(As2W15O56)2]16- (3) have been prepared in aqueous solution upon mixing cobalt(II) salts with the ligand [As2W15O56]12-. The reaction of 1 or 2 with the Fe3+ ion leads invariably to the same species [(FeIIIOH2)(CoIIOH2)CoII2(As2W15O56)2]15- (4) possessing three cobalt atoms and a single iron atom. However, if the Fe-containing homologue of compound 1, that is, the polyoxotungstate [(NaOH2)2FeIII2(As2W15O56)2]16- (5), is employed instead to react with the Co2+ ion, the species [(CoIIOH2)2FeIII2(As2W15O56)2]14- (6) is obtained, having two cobalt atoms and two iron atoms. The compounds 1, 2, 3, 4, and 6 are described for the first time and have been characterized by several physicochemical methods such as FTIR, UV-visible, ATG, and elemental analysis. Structural analysis by single-crystal X-ray diffraction has been carried out with compounds 2 (monoclinic space group P21/c, a = 17.0622(5) Å, b = 15.0828(4) Å, c = 32.0872(8) Å, ß = 91.170(1)°, and Z = 2) and 3 (triclinic space group P1̅, a = 13.6137(7) Å, b = 13.8836(8) Å, c = 22.9276(6) Å, α = 89.906(3)°, ß = 78.356(2)°, γ = 61.451(2)°, and Z = 1). Electrochemical studies undertaken with all the above-mentioned compounds and some of their homologues shed light on the influence of the chemical composition on their electrocatalytic properties toward substrates such as the nitrite ion and dioxygen. Magnetic measurements evidence anisotropic ferromagnetic interactions between Co2+ ions and antiferromagnetic interactions between Fe3+ ions. The nature and the strength of the Co2+-Fe3+ interactions depend on the relative orientations of their 3d orbitals. The effective magnetic moment of the Co2+ ions varies with the temperature and with the distortion of the octahedral sites in which they are located.

5.
Dalton Trans ; 45(9): 3715-26, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26672976

RESUMO

Both the α1- and the α2-isomers of mono-ruthenium (Ru)-substituted Dawson-type phosphotungstates with terminal aqua ligands, [α1-P2W17O61Ru(III)(H2O)](7-) (α1-RuH2O) and [α2-P2W17O61Ru(III)(H2O)](7-) (α2-RuH2O), were prepared in pure form by cleavage of the Ru-S bond of the corresponding DMSO derivatives, [α1-P2W17O61Ru(DMSO)](8-) (α1-RuDMSO) and [α2-P2W17O61Ru(DMSO)](8-) (α2-RuDMSO), respectively. Redox studies indicated that α1-RuH2O and α2-RuH2O show proton-coupled electron transfer (PCET), and the Ru(III)(H2O) species was reversibly reduced to Ru(II)(H2O) species and oxidized to Ru(IV)([double bond, length as m-dash]O) species and further to Ru(V)([double bond, length as m-dash]O) species in aqueous solution depending on the pH. Their redox potentials and thermal stabilities were compared with those of the corresponding α-Keggin-type derivatives ([α-XW11O39Ru(H2O)](n-); X = Si(4+) (n = 5), Ge(4+) (n = 5), or P(5+) (n = 4)). The basic electronic and redox features of Ru(L)-substituted Keggin- and Dawson-type heteropolytungstates (with L = H2O or O(2-)) were analyzed by means of density functional calculations. Similar to the corresponding α-Keggin-type derivatives, both α1-RuH2O and α2-RuH2O show catalytic activity for water oxidation.

6.
Inorg Chem ; 53(12): 5941-9, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24892769

RESUMO

Polyoxometalates (POMs) are inorganic entities featuring extensive and sometimes unusual redox properties. In this work, several experimental techniques as well as density functional theory (DFT) calculations have been applied to identify and assess the relevance of factors influencing the redox potentials of POMs. First, the position of the Mo substituent atom in the Wells-Dawson structure, α1- or α2-P2W17Mo, determines the potential of the first 1e(-) reduction wave. For P2W(18-x)Mox systems containing more than one Mo atom, reduction takes place at successively more positive potentials. We attribute this fact to the higher electron delocalization when some Mo oxidizing atoms are connected. After having analyzed the experimental and theoretical data for the monosubstituted α1- and α2-P2W17Mo anions, some relevant facts arise that may help to rationalize the redox behavior of POMs in general. Three aspects concern the stability of systems: (i) the favorable electron delocalization, (ii) the unfavorable e(-)-e(-) electrostatic repulsion, and (iii) the favorable electron pairing. They explain trends such as the second reduction wave occurring at more positive potentials in α1- than in α2-P2W17Mo, and also the third electron reduction taking place at a less negative potential in the case of α2, reversing the observed behavior for the first and the second waves. In P2W17V derivatives, the nature of the first "d" electron is more localized because of the stronger oxidant character of V(V). Thus, the reduction potentials as well as the computed reduction energies (REs) for the second reduction of either isomer are closer to each other than in Mo-substituted POMs. This may be explained by the lack of electron delocalization in monoreduced P2W17V(IV) systems.

7.
Nat Chem ; 6(5): 423-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24755594

RESUMO

In water-oxidizing photosynthetic organisms, light absorption generates a powerfully oxidizing chlorophyll complex (P680(•+)) in the photosystem II reaction centre. This is reduced via an electron transfer pathway from the manganese-containing water-oxidizing catalyst, which includes an electron transfer relay comprising a tyrosine (Tyr)-histidine (His) pair that features a hydrogen bond between a phenol group and an imidazole group. By rapidly reducing P680(•+), the relay is thought to mitigate recombination reactions, thereby ensuring a high quantum yield of water oxidation. Here, we show that an artificial reaction centre that features a benzimidazole-phenol model of the Tyr-His pair mimics both the short-internal hydrogen bond in photosystem II and, using electron paramagnetic resonance spectroscopy, the thermal relaxation that accompanies proton-coupled electron transfer. Although this artificial system is much less complex than the natural one, theory suggests that it captures the essential features that are important in the function of the relay.


Assuntos
Histidina/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Tirosina/metabolismo , Acetonitrilas , Biomimética , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/química , Radicais Livres/metabolismo , Histidina/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Oxirredução , Tirosina/química
8.
Faraday Discuss ; 148: 83-95; discussion 97-108, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21322479

RESUMO

Water-bound metal (M) complexes play a central role in the catalytic centers of natural systems such as Photosystem II (PSII), superoxide dismutase, cytochrome c oxidase and others. In these systems, electron transfer reactions involving the metal center are coupled to proton transfers. Besides its fundamental interest, comprehension of these reactions and of possible bio-inspired catalytic devices is an additional motivation for studying the coupling between proton and electron transfer (proton-coupled electron transfers, PCET), starting with an aqua-M(II)/hydroxo-M(III) couple, and going to higher oxidation degrees as in the case of PSII (hydroxo-M(III)/oxo-M(IV) couple). Factors that determine the occurrence of the stepwise and concerted pathways are recalled from the illustrating example of a recently described mononuclear osmium complex, thus opening perspectives for further studies of the biomimicking complex. PCET in a mononuclear aqua/hydroxo manganese couple was then studied using the electrochemical approach.


Assuntos
Transporte de Elétrons , Metais/química , Água/química , Eletroquímica , Concentração de Íons de Hidrogênio , Manganês/química , Oxirredução , Prótons
9.
Proc Natl Acad Sci U S A ; 106(29): 11829-36, 2009 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-19584254

RESUMO

Kinetic analysis of the successive oxidative cyclic voltammetric responses of [Os(II)(bpy)(2)py(OH(2))](2+) in buffered water, together with determination of H/D isotope effects, has allowed the determination of the mechanisms of the successive proton-coupled electron transfers that convert the Os(II)-aquo complex into the Os(III)-hydroxo complex and the later into the Os(IV)-oxo complex. The stepwise pathways prevail over the concerted pathway in the first case. However, very large concentrations of a base, such as acetate, trigger the beginning of a concerted reaction. The same trend appears, but to a much larger extent, when high local concentration of carboxylates are attached close to the Os complex. The Os(III)-hydroxo/Os(IV)-oxo couple is globally much slower and concerted pathways predominate over the stepwise pathways. Water is, however, not an appropriate proton acceptor in this respect. Other bases, such as citrate or phosphate, are instead quite effective for triggering concerted pathways. Here, we suggest factors causing these contrasting behaviors, providing a practical illustration of the prediction that concerted processes are an efficient way of avoiding high-energy intermediates. Observation of a strong decelerating effect of inactive ions together with the positive role of high local concentrations of carboxylates to initiate a concerted route underscores the variety of structural and medium factors that may operate to modulate and control the occurrence of concerted pathways. These demonstrations and analyses of the occurrence of concerted pathways in an aquo-hydroxo-oxo series are expected to serve as guidelines for studies in term of methodology and factor analysis.

10.
Chemphyschem ; 10(1): 191-8, 2009 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-18816536

RESUMO

Successive oxidation of transition metal(II) aqua complexes (M(II)OH(2) to M(III)OH) is a domain in which proton-coupled electron transfer reactions are extremely common. The mechanism of these PCET reactions-concerted or stepwise-is an important issue in the understanding and design of natural or artificial systems catalyzing the formation of dioxygen by four-electron oxidation of water. Concerted proton-coupled electron transfer from an aqua metal(II) to a hydroxo metal(III) complex requires the close proximity of a proton-accepting group with a pK value between those of the aqua complexes. Otherwise, stepwise electron-proton or proton-electron pathways involving high-energy intermediates are followed. Concerted proton-electron pathways involving water as proton-acceptor or proton-donor group are inefficient. Cyclic voltammetry of the title complex in buffered aqueous solution and re-examination of previous results for the same complex attached to an electrode surface are used to establish these conclusions, which provide a starting point on the route to higher degrees of oxidation, such as those involved in the catalysis of water oxidation.

11.
J Phys Chem A ; 109(12): 2984-90, 2005 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-16833619

RESUMO

The reductive cleavage of chloro- and polychloroacetamides in N,N-dimethylformamide gives new insights into the nature of the in-cage ion radical cluster formed upon dissociative electron transfer. Within the family of compounds investigated, the electrochemical reduction leads to the successive expulsion of chloride ions. At each stage the electron transfer is concerted with the breaking of the C-Cl bond and acts as the rate-determining step. The reduction further leads to the formation of the corresponding carbanion with the injection of a second electron, which is in turn protonated by a weak acid added to the solution. From the joint use of cyclic voltammetric data, the sticky dissociative electron-transfer model and quantum ab initio calculations, the interaction energies within the cluster fragments (*R, Cl-) resulting from the first electron transfer to the parent RCl molecule are obtained. It is shown that the stability of these adducts, which should be viewed as an essentially electrostatic radical-ion pair, is mainly controlled by the intensity of the dipole moment of the remaining radical part and may eventually be strengthened by the formation of an intramolecular hydrogen bond, as is the case with 2-chloroacetamide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...