Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 103(7): 2088-2097, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24902839

RESUMO

Coupling an infrared (IR) camera to a freeze dryer for on-line monitoring of freeze-drying cycles is described for the first time. Normally, product temperature is measured using a few invasive Pt-100 probes, resulting in poor spatial resolution. To overcome this, an IR camera was placed on a process-scale freeze dryer. Imaging took place every 120 s through a Germanium window comprising 30,000 measurement points obtained contact-free from -40 °C to 25 °C. Results are presented for an empty system, bulk drying of cheese slurry, and drying of 1 mL human serum in 150 vials. During freezing of the empty system, differences of more than 5 °C were measured on the shelf. Adding a tray to the empty system, a difference of more than 8 °C was observed. These temperature differences probably cause different ice structures affecting the drying speed during sublimation. A temperature difference of maximum 13 °C was observed in bulk mode during sublimation. When drying in vials, differences of more than 10 °C were observed. Gradually, the large temperature differences disappeared during secondary drying and products were transformed into uniformly dry cakes. The experimental data show that the IR camera is a highly versatile on-line monitoring tool for different kinds of freeze-drying processes.


Assuntos
Desenho de Equipamento , Liofilização , Raios Infravermelhos , Termografia , Queijo/análise , Testes de Química Clínica/instrumentação , Testes de Química Clínica/métodos , Indústria Alimentícia/instrumentação , Indústria Alimentícia/métodos , Liofilização/instrumentação , Liofilização/métodos , Humanos , Soro/química , Termografia/instrumentação , Termografia/métodos
2.
Anal Bioanal Chem ; 400(3): 821-33, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21416167

RESUMO

The development of multi-analyte methods for lipophilic shellfish toxins based on liquid chromatography-mass spectrometry permits rapid screening and analysis of samples for a wide variety of toxins in a single run. Validated methods and appropriate certified reference materials (CRMs) are required to ensure accuracy of results. CRMs are essential for accurate instrument calibration, for assessing the complete analytical method from sample extraction to data analysis and for verifying trueness. However, CRMs have hitherto only been available for single toxin groups. Production of a CRM containing six major toxin groups was achieved through an international collaboration. Preparation of this material, CRM-FDMT1, drew on information from earlier studies as well as improved methods for isolation of toxins, handling bulk tissues and production of reference materials. Previous investigations of stabilisation techniques indicated freeze-drying to be a suitable procedure for preparation of shellfish toxin reference materials and applicable to a wide range of toxins. CRM-FDMT1 was initially prepared as a bulk wet tissue homogenate containing domoic acid, okadaic acid, dinophysistoxins, azaspiracids, pectenotoxin-2, yessotoxin and 13-desmethylspirolide C. The homogenate was then freeze-dried, milled and bottled in aliquots suitable for distribution and analysis. The moisture content and particle size distribution were measured, and determined to be appropriate. A preliminary toxin analysis of the final material showed a comprehensive toxin profile.


Assuntos
Bivalves/química , Toxinas Marinhas/análise , Espectrometria de Massas/normas , Animais , Cromatografia Líquida/normas , Liofilização , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...