Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4413, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479700

RESUMO

The emergence and reemergence of mosquito-borne diseases in Brazil such as yellow fever, zika, chikungunya, and dengue have had serious impacts on public health. Concerns have been raised due to the rapid dissemination of the chikungunya virus across the country since its first detection in 2014 in Northeast Brazil. In this work, we carried out on-site training activities in genomic surveillance in partnership with the National Network of Public Health Laboratories that have led to the generation of 422 chikungunya virus genomes from 12 Brazilian states over the past two years (2021-2022), a period that has seen more than 312 thousand chikungunya fever cases reported in the country. These genomes increased the amount of available data and allowed a more comprehensive characterization of the dispersal dynamics of the chikungunya virus East-Central-South-African lineage in Brazil. Tree branching patterns revealed the emergence and expansion of two distinct subclades. Phylogeographic analysis indicated that the northeast region has been the leading hub of virus spread towards other regions. Increased frequency of C > T transitions among the new genomes suggested that host restriction factors from the immune system such as ADAR and AID/APOBEC deaminases might be driving the genetic diversity of the chikungunya virus in Brazil.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Febre Amarela , Infecção por Zika virus , Zika virus , Animais , Humanos , Vírus Chikungunya/genética , Brasil/epidemiologia , Febre de Chikungunya/epidemiologia , Nucleotídeos
2.
medRxiv ; 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37034611

RESUMO

The emergence and reemergence of mosquito-borne diseases in Brazil such as Yellow Fever, Zika, Chikungunya, and Dengue have had serious impacts on public health. Concerns have been raised due to the rapid dissemination of the chikungunya virus (CHIKV) across the country since its first detection in 2014 in Northeast Brazil. Faced with this scenario, on-site training activities in genomic surveillance carried out in partnership with the National Network of Public Health Laboratories have led to the generation of 422 CHIKV genomes from 12 Brazilian states over the past two years (2021-2022), a period that has seen more than 312 thousand chikungunya fever cases reported in the country. These new genomes increased the amount of available data and allowed a more comprehensive characterization of the dispersion dynamics of the CHIKV East-Central-South-African (ECSA) lineage in Brazil. Tree branching patterns revealed the emergence and expansion of two distinct subclades. Phylogeographic analysis indicated that the northeast region has been the leading hub of virus spread towards other regions. Increased frequency of C>T transitions among the new genomes suggested that host restriction factors from the immune system such as ADAR and AID/APOBEC deaminases might be driving CHIKV ECSA lineage genetic diversity in Brazil.

3.
Artigo em Inglês | MEDLINE | ID: mdl-35195198

RESUMO

Hand-foot-and-mouth disease (HFMD) is a highly contagious viral disease commonly associated to Enteroviruses (EV). During 2018, Brazil faced massive HFMD outbreaks spread across the country. This study aimed to characterize the EV responsible for the HFMD outbreak that occurred in Paraiba State, Brazilian Northeastern region, in 2018, followed by a phylogenetic analysis to detail information on its genetic diversity. A total of 49 serum samples (one from each patient) collected from children ≤ 15 years old, clinically diagnosed with HFMD were tested for EV using conventional RT-PCR and RT-qPCR. EV infection was confirmed in 71.4% (35/49) of samples. The mean and median ages were 1.83 years and one year old, respectively. Twenty-two EV-positive samples were successfully sequenced and classified as EV-A species; 13 samples were also identified with the CV-A6 genotype. The phylogenetic analysis (VP1 region) of three samples revealed that the detected CV-A6 strains belonged to sub-lineage D3. The CV-A6 strains detected here clustered with strains from South America, Europe and West Asia strains that were also involved in HFMD cases during the 2017-2018 seasons, in addition to the previously detected Brazilian CV-A6 strains from 2012 to 2017, suggesting a global co-circulation of a set of different CV-A6 strains introduced in the country at different times. The growing circulation of the emerging CV-A6 associated with HFMD, together with the detection of more severe cases worldwide, suggests the need for a more intense surveillance system of HFMD in Brazil. In addition, this investigation was performed exclusively on serum samples, and the analysis of whole blood samples should be considered and could have shown advantages when employed in the diagnosis of enteroviral HFMD outbreaks.


Assuntos
Febre Aftosa , Doença de Mão, Pé e Boca , Adolescente , Animais , Brasil/epidemiologia , Criança , China/epidemiologia , Surtos de Doenças , Febre Aftosa/epidemiologia , Genótipo , Doença de Mão, Pé e Boca/diagnóstico , Doença de Mão, Pé e Boca/epidemiologia , Humanos , Lactente , Filogenia
4.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1360805

RESUMO

ABSTRACT Hand-foot-and-mouth disease (HFMD) is a highly contagious viral disease commonly associated to Enteroviruses (EV). During 2018, Brazil faced massive HFMD outbreaks spread across the country. This study aimed to characterize the EV responsible for the HFMD outbreak that occurred in Paraiba State, Brazilian Northeastern region, in 2018, followed by a phylogenetic analysis to detail information on its genetic diversity. A total of 49 serum samples (one from each patient) collected from children ≤ 15 years old, clinically diagnosed with HFMD were tested for EV using conventional RT-PCR and RT-qPCR. EV infection was confirmed in 71.4% (35/49) of samples. The mean and median ages were 1.83 years and one year old, respectively. Twenty-two EV-positive samples were successfully sequenced and classified as EV-A species; 13 samples were also identified with the CV-A6 genotype. The phylogenetic analysis (VP1 region) of three samples revealed that the detected CV-A6 strains belonged to sub-lineage D3. The CV-A6 strains detected here clustered with strains from South America, Europe and West Asia strains that were also involved in HFMD cases during the 2017-2018 seasons, in addition to the previously detected Brazilian CV-A6 strains from 2012 to 2017, suggesting a global co-circulation of a set of different CV-A6 strains introduced in the country at different times. The growing circulation of the emerging CV-A6 associated with HFMD, together with the detection of more severe cases worldwide, suggests the need for a more intense surveillance system of HFMD in Brazil. In addition, this investigation was performed exclusively on serum samples, and the analysis of whole blood samples should be considered and could have shown advantages when employed in the diagnosis of enteroviral HFMD outbreaks.

5.
Emerg Infect Dis ; 27(7): 1789-1794, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33883059

RESUMO

A 37-year-old healthcare worker from the northeastern region of Brazil experienced 2 clinical episodes of coronavirus disease. Infection with severe acute respiratory syndrome coronavirus 2 was confirmed by reverse transcription PCR in samples collected 116 days apart. Whole-genome sequencing revealed that the 2 infections were caused by the most prevalent lineage in Brazil, B.1.1.33, and the emerging lineage P.2. The first infection occurred in June 2020; Bayesian analysis suggests reinfection at some point during September 14-October 11, 2020, a few days before the second episode of coronavirus disease. Of note, P.2 corresponds to an emergent viral lineage in Brazil that contains the mutation E484K in the spike protein. The P.2 lineage was initially detected in the state of Rio de Janeiro, and since then it has been found throughout the country. Our findings suggest not only a reinfection case but also geographic dissemination of the emerging Brazil clade P.2.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Teorema de Bayes , Brasil/epidemiologia , Humanos , Reinfecção
6.
Viruses ; 13(5)2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919314

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic in Brazil was dominated by two lineages designated as B.1.1.28 and B.1.1.33. The two SARS-CoV-2 variants harboring mutations at the receptor-binding domain of the Spike (S) protein, designated as lineages P.1 and P.2, evolved from lineage B.1.1.28 and are rapidly spreading in Brazil. Lineage P.1 is considered a Variant of Concern (VOC) because of the presence of multiple mutations in the S protein (including K417T, E484K, N501Y), while lineage P.2 only harbors mutation S:E484K and is considered a Variant of Interest (VOI). On the other hand, epidemiologically relevant B.1.1.33 deriving lineages have not been described so far. Here we report the identification of a new SARS-CoV-2 VOI within lineage B.1.1.33 that also harbors mutation S:E484K and was detected in Brazil between November 2020 and February 2021. This VOI displayed four non-synonymous lineage-defining mutations (NSP3:A1711V, NSP6:F36L, S:E484K, and NS7b:E33A) and was designated as lineage N.9. The VOI N.9 probably emerged in August 2020 and has spread across different Brazilian states from the Southeast, South, North, and Northeast regions.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Brasil/epidemiologia , Genoma Viral , Humanos , Epidemiologia Molecular , Ligação Proteica , SARS-CoV-2/isolamento & purificação
8.
Viruses ; 13(5): 1-20, 2021.
Artigo em Inglês | LILACS, CONASS, Coleciona SUS, Sec. Est. Saúde SP, SESSP-IALPROD, Sec. Est. Saúde SP | ID: biblio-1416914

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic in Brazil was dominated by two lineages designated as B.1.1.28 and B.1.1.33. The two SARS-CoV-2 variants harboring mutations at the receptor-binding domain of the Spike (S) protein, designated as lineages P.1 and P.2, evolved from lineage B.1.1.28 and are rapidly spreading in Brazil. Lineage P.1 is considered a Variant of Concern (VOC) because of the presence of multiple mutations in the S protein (including K417T, E484K, N501Y), while lineage P.2 only harbors mutation S:E484K and is considered a Variant of Interest (VOI). On the other hand, epidemiologically relevant B.1.1.33 deriving lineages have not been described so far. Here we report the identification of a new SARS-CoV-2 VOI within lineage B.1.1.33 that also harbors mutation S:E484K and was detected in Brazil between November 2020 and February 2021. This VOI displayed four non-synonymous lineage-defining mutations (NSP3:A1711V, NSP6:F36L, S:E484K, and NS7b:E33A) and was designated as lineage N.9. The VOI N.9 probably emerged in August 2020 and has spread across different Brazilian states from the Southeast, South, North, and Northeast regions.


Assuntos
Proteínas , SARS-CoV-2 , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...