Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 63(7): 2226-2239, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36952618

RESUMO

The SARS-CoV-2 pandemic has prompted global efforts to develop therapeutics. The main protease of SARS-CoV-2 (Mpro) and the papain-like protease (PLpro) are essential for viral replication and are key targets for therapeutic development. In this work, we investigate the mechanisms of SARS-CoV-2 inhibition by diphenyl diselenide (PhSe)2 which is an archetypal model of diselenides and a renowned potential therapeutic agent. The in vitro inhibitory concentration of (PhSe)2 against SARS-CoV-2 in Vero E6 cells falls in the low micromolar range. Molecular dynamics (MD) simulations and density functional theory (DFT) calculations [level of theory: SMD-B3LYP-D3(BJ)/6-311G(d,p), cc-pVTZ] are used to inspect non-covalent inhibition modes of both proteases via π-stacking and the mechanism of covalent (PhSe)2 + Mpro product formation involving the catalytic residue C145, respectively. The in vitro CC50 (24.61 µM) and EC50 (2.39 µM) data indicate that (PhSe)2 is a good inhibitor of the SARS-CoV-2 virus replication in a cell culture model. The in silico findings indicate potential mechanisms of proteases' inhibition by (PhSe)2; in particular, the results of the covalent inhibition here discussed for Mpro, whose thermodynamics is approximatively isoergonic, prompt further investigation in the design of antiviral organodiselenides.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Papaína , Peptídeo Hidrolases , Cisteína Endopeptidases/química , Proteínas não Estruturais Virais/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Antivirais/farmacologia , Antivirais/química , Simulação de Acoplamento Molecular
2.
Curr Drug Discov Technol ; 20(2): e101022209771, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36221883

RESUMO

BACKGROUND: SARS-CoV-2 main protease (Mpro or 3CLpro) and papain-like protease (PLpro) are common viral targets for repurposed drugs to combat COVID-19 disease. Recently, several antidepressants (such as fluoxetine, venlafaxine and citalopram) belonging to the Selective Serotonin Reuptake Inhibitors (SSRIs) and the Serotonin-Norepinephrine Reuptake Inhibitors (SNRI) classes have been shown to in vitro inhibit viral replication. AIM: Investigate a possible action of fluoxetine and derivatives on SARS-CoV-2 protease sites. METHODS: Molecular docking was performed using AutoDock Vina. Both protease structures and different drug conformations were used to explore the possibility of SARS-CoV-2 inhibition on a Mpro or PLpro related pathway. Drug structures were obtained by optimization with the Avogadro software and MOPAC using the PM6 method. Results were analysed on Discovery Studio Visualizer. RESULTS: The results indicated that Mpro interacted in a thermodynamically favorable way with fluoxetine, venlafaxine, citalopram, atomoxetine, nisoxetine and norfluoxetine in the region of the active site, whether PLpro conformers did not come close to the active site. CONCLUSION: In an in silico perspective, it is likely that the SSRIs and other anti-depressants could interact with Mpro and cause the enzyme to malfunction. Unfortunately, the same drugs did not present similar results on PLpro crystal, therefore, no inhibition is expected in an in vitro trial. Anyway, in vitro tests are necessary for a better understanding of the links between SARS-CoV-2 proteases and antidepressants.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Simulação de Acoplamento Molecular , Papaína , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , Peptídeo Hidrolases , Citalopram , Cloridrato de Venlafaxina/farmacologia , Cloridrato de Venlafaxina/uso terapêutico , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Inibidores de Proteases/química , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico
3.
J Ethnopharmacol ; 291: 115147, 2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35227781

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: Our recently published paper demonstrated that ethyl acetate fractions obtained from Cymbopogon citratus (DC.) Stapf (C. citratus) leaves, which are consumed as infusion in folk medicine due to their therapeutic properties, are rich in polyphenols and exhibit promising antioxidant activity by acting through different mechanisms in vitro. However, studies regarding the toxicity of these fractions are necessary to investigate their safe use in future biomedical applications. AIM OF THE STUDY: This study aimed to investigate the toxicity of ethyl acetate (obtained in acidic and basic conditions and after the essential oil removal from the leaves) and chloroform fractions, essential oil, and its pure constituents, citral and geraniol. MATERIALS AND METHODS: The toxicity of C. citratus samples was evaluated by using Artemia salina (A. salina) and human blood cells (leukocytes and erythrocytes). RESULTS: The A. salina lethality assay demonstrated that C. citratus fractions were moderately toxic with LC50 values ranging from 146.12 to 433.15 µg mL-1, whereas the essential oil and isolated compounds were highly toxic with LC50 lower than 100 µg mL-1. Leukocyte viability decreased after incubation in the presence of the fractions obtained after the essential oil removal from the plant leaves, as well as in the presence of essential oil, citral and geraniol. The same samples increased the osmotic fragility of erythrocytes, and field emission gun scanning electron microscopy (FESEM) analysis revealed significant changes in cell morphology. Interestingly, our results suggest that the previous removal of essential oil from plant leaves facilitated the extraction of cytotoxic compounds from C. citratus. CONCLUSIONS: It was demonstrated that C. citratus ethyl acetate and chloroform fractions, essential oil, as well citral and geraniol were considered toxic to A. salina, cytotoxic to human blood cells and showed to induce alterations in the erythrocyte membrane at higher concentrations. These fractions will be further investigated to identify the phytochemicals involved in the observed cytotoxic effects and explored using in vivo models.


Assuntos
Cymbopogon , Óleos Voláteis , Monoterpenos Acíclicos , Cymbopogon/química , Eritrócitos , Humanos , Leucócitos , Óleos Voláteis/química , Óleos Voláteis/toxicidade
4.
Chem Res Toxicol ; 34(6): 1655-1663, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34077192

RESUMO

Experimental studies have indicated that electrophilic mercury forms (e.g., methylmercury, MeHg+) can accelerate the breakage of selenocysteine in vitro. Particularly, in 2009, Khan et al. (Environ. Toxicol. Chem. 2009, 28, 1567-1577) proposed a mechanism for the degradation of a free methylmercury selenocysteinate complex that was theoretically supported by Asaduzzaman et al. (Inorg. Chem. 2010, 50, 2366-2372). However, little is known about the fate of methylmercury selenocysteinate complexes embedded in an enzyme, especially in conditions of oxidative stress in which methylmercury target enzymes operate. Here, an accurate computational study on molecular models (level of theory: COSMO-ZORA-BLYP-D3(BJ)/TZ2P) was carried out to investigate the formation of dehydroalanine (Dha) in selenoenzymes, which irreversibly impairs their function. Methylselenocysteine as well as methylcysteine and methyltellurocysteine were included to gain insight on the peculiar behavior of selenium. Dha forms in a two-step process, i.e., the oxidation of the chalcogen nucleus followed by a syn-elimination leading to the alkene and the chalcogenic acid. The effect of an excess of hydrogen peroxide, which may lead to the formation of chalcogenones before the elimination, and of MeHg+, a severe toxicant targeting selenoproteins, which leads to the formation of methylmercury selenocysteinate, are also studied with the aim of assessing whether these pathological conditions facilitate the formation of Dha. Indeed, elimination occurs after chalcogen oxidation and MeHg+ facilitates the process. These results indicate a possible mechanism of toxicity of MeHg+ in selenoproteins.


Assuntos
Alanina/análogos & derivados , Teoria da Densidade Funcional , Compostos de Metilmercúrio/metabolismo , Selenoproteínas/metabolismo , Alanina/biossíntese , Alanina/química , Compostos de Metilmercúrio/química , Modelos Moleculares , Estrutura Molecular
5.
Mol Inform ; 40(8): e2100028, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34018687

RESUMO

The COVID-19 pandemic caused by the SARS-CoV-2 has mobilized scientific attention in search of a treatment. The cysteine-proteases, main protease (Mpro) and papain-like protease (PLpro) are important targets for antiviral drugs. In this work, we simulate the interactions between the Mpro and PLpro with Ebselen, its metabolites and derivatives with the aim of finding molecules that can potentially inhibit these enzymes. The docking data demonstrate that there are two main interactions between the thiol (-SH) group of Cys (from the protease active sites) and the electrophilic centers of the organoselenium molecules, i. e. the interaction with the carbonyl group (O=C… SH) and the interaction with the Se moiety (Se… SH). Both interactions may lead to an adduct formation and enzyme inhibition. Density Functional Theory (DFT) calculations with Ebselen indicate that the energetics of the thiol nucleophilic attack is more favorable on Se than on the carbonyl group, which is in accordance with experimental data (Jin et al. Nature, 2020, 582, 289-293). Therefore, organoselenium molecules should be further explored as inhibitors of the SARS-CoV-2 proteases. Furthermore, we suggest that some metabolites of Ebselen (e. g. Ebselen diselenide and methylebselenoxide) and derivatives ethaselen and ebsulfur should be tested in vitro as inhibitors of virus replication and its proteases.


Assuntos
Azóis/farmacologia , Tratamento Farmacológico da COVID-19 , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Compostos Organosselênicos/farmacologia , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Proteínas da Matriz Viral/metabolismo , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacologia , Azóis/química , Azóis/metabolismo , COVID-19/metabolismo , Domínio Catalítico/efeitos dos fármacos , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Descoberta de Drogas , Humanos , Isoindóis , Simulação de Acoplamento Molecular , Compostos Organosselênicos/química , Compostos Organosselênicos/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Proteínas da Matriz Viral/antagonistas & inibidores
6.
J Ethnopharmacol ; 242: 112026, 2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31260758

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Disturbed mitochondrial function and energy crisis serve as key mechanisms for the development of liver injury. Hence, targeting cellular mitochondria in liver diseases might serve as a therapeutic option. Tapinanthus globifer (A.Rich.) Tiegh. has been used in traditional medicine in the management of liver disease. However, there is no scientific evidence supporting such use. AIM OF THE STUDY: The current investigation was designed to evaluate the protective role of Tapinanthus globifer treatment on the liver mitochondrial function after the induction of hepatotoxicity by the hepatotoxic agent Fe2+in vitro. MATERIALS AND METHODS: In this study, isolated mitochondria from rats' liver was incubated with Fe2+ (10 µM) for 1 h in the absence or presence of T. globifer (50, 100 and 200 µg/mL) metanolic extract (MVA). Mitochondrial viability, mitochondrial membrane potential (ΔΨm), mitochondrial swelling (MPTP)., total thiol content, lipid peroxidation (TBARS) and reactive oxygen species (ROS) production were measured. HPLC-DAD was used to identify potential phytochemicals in MVA. RESULTS: (MVA) was able to improve mitochondrial dysfunction induced by Fe2+, by attenuating MTT reduction, increased ΔΨm and mitochondrial swelling. Reduced total thiol and non-protein thiol contents which were associated with increased lipid peroxidation and ROS generation in Fe2+-treated mitochondria were significantly improved by MVA co-treatment. HPLC-DAD analysis revealed the presence of gallic acid, catechin, epigallocatechin, caffeic acid, rutin, glycoside flavonoid and quercetin in MVA that can be responsible for its beneficial effect. CONCLUSION: MVA phyto-compounds enhance mitochondrial redox signaling and possess mitochondrial function improving potential, thereby, providing scientific basis for its use in traditional medicine.


Assuntos
Loranthaceae , Mitocôndrias Hepáticas/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Ferro/toxicidade , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/fisiologia , Dilatação Mitocondrial/efeitos dos fármacos , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Folhas de Planta , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
7.
Chem Biol Interact ; 294: 135-143, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30120923

RESUMO

The present study evaluated the neuroprotective effects of one selenium-containing AZT derivative compound (S1073) in memory and learning impairment caused by Intracerebroventricular-streptozotocin (ICV-STZ). ICV-STZ in mice causes impairment of energy metabolism with oxidative damage and cholinergic dysfunction, and provides a relevant model for sporadic dementia of Alzheimer's type (AD). Acetylcolinesterase (AChE), Catalase (CAT), dichlorofluorescein oxidation (DCFH), TBARS and thiol content were measured. Swiss adult mice were pre-treated with S1073 [1 mmol/kg] (i.p.) and after 30 min of the injection received a bilateral dose of STZ [11.3 µmol/l]. After 8 days' STZ injection, we performed the behavioral experiments (Beaker test, Open field and Morris water maze task). ICV-STZ caused significant learning and memory impairments, which were significantly improved by S1073 pre-treatment. A significant increase in cerebral DFCH, TBARS levels and AChE activity and a disturbance in the memory and learning were observed in ICV-STZ injected animals. S1073 significantly ameliorated all alterations induced by ICV-STZ in mice. All these findings support the neuroprotective role of S1073 in mice model of Alzheimer's dementia-type induced by ICV-STZ, which may be associated with its antioxidant activity and/or with its inhibitory effect in brain AChE. In fact, in silico analysis indicated that S1073 may be an inhibitor of AChE.


Assuntos
Comportamento Animal/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Compostos Organosselênicos/farmacologia , Zidovudina/análogos & derivados , Zidovudina/farmacologia , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/prevenção & controle , Animais , Sítios de Ligação , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Catalase/metabolismo , Domínio Catalítico , Modelos Animais de Doenças , Infusões Intraventriculares , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Compostos Organosselênicos/metabolismo , Compostos Organosselênicos/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Estreptozocina , Zidovudina/metabolismo , Zidovudina/uso terapêutico
8.
Molecules ; 21(6)2016 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-27338314

RESUMO

BACKGROUND: Rhaphiodon echinus is a weed plant used in the Brazilian folk medicinal for the treatment of infectious diseases. In this study, the essential oil of R. echinus leaf was investigated for its antimicrobial properties. METHODS: The chemical constituents of the essential oil were characterized by GC-MS. The antimicrobial properties were determined by studying by the microdilution method the effect of the oil alone, and in combination with antifungal or antibiotic drugs against the fungi Candida albicans, Candida krusei and Candida tropicalis and the microbes Escherichia coli, Staphylococcus aureus and Pseudomonas. In addition, the iron (II) chelation potential of the oil was determined. RESULTS: The results showed the presence of ß-caryophyllene and bicyclogermacrene in major compounds, and revealed a low antifungal and antibacterial activity of the essential oil, but a strong modulatory effect on antimicrobial drugs when associated with the oil. The essential oil showed iron (II) chelation activity. CONCLUSIONS: The GC-MS characterization revealed the presence of monoterpenes and sesquiterpenes in the essential oil and metal chelation potential, which may be responsible in part for the modulatory effect of the oil. These findings suggest that essential oil of R. echinus is a natural product capable of enhancing the antibacterial and antifungal activity of antimicrobial drugs.


Assuntos
Anti-Infecciosos/farmacologia , Antifúngicos/farmacologia , Infecções/tratamento farmacológico , Lamiaceae/química , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Anti-Infecciosos/química , Antifúngicos/química , Brasil , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Humanos , Infecções/microbiologia , Monoterpenos/química , Óleos Voláteis/química , Folhas de Planta/química , Óleos de Plantas/química , Sesquiterpenos/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade
9.
Environ Toxicol Pharmacol ; 45: 28-40, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27258136

RESUMO

4-Vinylcyclohexene diepoxide (VCD) is an industrial occupational health hazard chemical because it induces ovotoxicity in rodents. The current study investigated the impacts of VCD on selected hepatic and renal markers of oxidative stress and inflammation in both sexes of Wistar rats. Thus, male and female rats were randomly distributed into four groups of ten rats per group, and dosed orally with VCD for 28days. The control male and female groups of rats received corn oil only, while each of the three remaining groups of both sexes of rats received VCD (100, 250 and 500mg/kg BW) respectively. Thereafter, biomarkers of hepatic and renal oxidative damage, inflammation and immunohistochemical expressions of iNOS, COX-2, caspase-9 and caspase-3 were evaluated. The results revealed that VCD increased markers of liver and kidney functions, oxidative damage and inflammation, and disrupted the antioxidant homeostasis of the rats (p<0.05). Lastly, VCD enhanced the immunohistochemical expressions of iNOS, COX-2, caspase-9 and caspase-3 in the liver of the rats. Thus, our data imply that VCD induced toxicity in the liver and kidney of rats via the combined impacts of oxidative damage and inflammation.


Assuntos
Cicloexenos/toxicidade , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Compostos de Vinila/toxicidade , Animais , Caspase 3/metabolismo , Caspase 9/metabolismo , Catalase/metabolismo , Ciclo-Oxigenase 2/metabolismo , Citocinas/sangue , Feminino , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Rim/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Superóxido Dismutase/metabolismo
10.
Free Radic Biol Med ; 71: 99-108, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24681254

RESUMO

4-Vinylcyclohexene (VCH) is a dimer of 1,3-butadiene produced as a by-product of pesticides, plastic, rubber, flame retardants, and tire production. Although, several studies have reported the ovotoxicity of VCH, information on a possible involvement of oxidative stress in the toxicity of this occupational chemical is scarce. Hence, this study was carried out to investigate further possible mechanisms of toxicity of VCH with a specific emphasis on oxidative stress using a Drosophila melanogaster model. D. melanogaster (both genders) of 1 to 3 days old were exposed to different concentrations of VCH (10 µM-1 mM) in the diet for 5 days. Subsequently, the survival and negative geotaxis assays and the quantification of reactive oxygen species (ROS) generation were determined. In addition, we evaluated RT-PCR expressions of selected oxidative stress and antioxidant mRNA genes (HSP27, 70, and 83, SOD, Nrf-2, MAPK2, and catalase). Furthermore, catalase, glutathione-S-transferase (GST), delta aminolevulinic acid dehydratase (δ-ALA-D), and acetylcholinesterase (AChE) activities were determined. VCH exposure impaired negative geotaxic behavior and induced the mRNA of SOD, Nrf-2, and MAPK2 genes expressions. There were increases in catalase and ROS production, as well as inhibitions of GST, δ-ALA-D, and AChE activities (P<0.05). Our results suggest that the VCH mechanism of toxicity is associated with oxidative damage, as evidenced by the alteration in the oxidative stress-antioxidant balance, and possible neurotoxic consequences due to decreased AChE activity, and impairments in negative geotaxic behavior. Thus, we conclude that D. melanogaster is a useful model for investigating the toxicity of VCH exposure, and here, we have provided further insights on the mechanism of VCH-induced toxicity.


Assuntos
Cicloexenos/toxicidade , Proteínas de Drosophila/genética , Drosophila melanogaster/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Espécies Reativas de Oxigênio/agonistas , Poluentes Químicos da Água/toxicidade , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Catalase/genética , Catalase/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Feminino , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Masculino , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Estresse Oxidativo , Sintase do Porfobilinogênio/genética , Sintase do Porfobilinogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
11.
J Med Food ; 15(6): 549-56, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22424457

RESUMO

Acetaminophen (APAP) hepatotoxicity has been related to several cases of hepatitis, cirrhosis, and hepatic transplant. As APAP hepatotoxicity is related to reactive oxygen species (ROS) formation and excessive oxidative stress, natural antioxidant compounds have been tested as an alternative therapy to diminish the hepatic dysfunction induced by APAP. Taraxacum officinale Weber (Family Asteraceae), commonly known as dandelion, is used for medicinal purposes because of its choleretic, diuretic, antioxidant, anti-inflammatory, and hepatoprotective properties. This study evaluated the hepatoprotective activity of T. officinale leaf extract against APAP-induced hepatotoxicity. T. officinale was able to decrease thiobarbituric acid-reactive substance levels induced by 200 mg/kg APAP (p.o.), as well as prevent the decrease in sulfhydryl levels caused by APAP treatment. Furthermore, histopathological alterations, as well as the increased levels of serum aspartate and alanine aminotransferases caused by APAP, were prevented by T. officinale (0.1 and 0.5 mg/mL). In addition, T. officinale extract also demonstrated antioxidant activity in vitro, as well as scavenger activity against 2,2-diphenyl-1-picrylhydrazyl and nitric oxide radicals. Our results clearly demonstrate the hepatoprotective effect of T. officinale against the toxicity induced by APAP. The possible mechanisms involved include its scavenger activities against ROS and reactive nitrogen species, which are attributed to the content of phenolic compounds in the extract.


Assuntos
Acetaminofen/efeitos adversos , Antioxidantes/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Fígado/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/uso terapêutico , Taraxacum/química , Alanina Transaminase/sangue , Analgésicos não Narcóticos/efeitos adversos , Animais , Antioxidantes/farmacologia , Aspartato Aminotransferases/sangue , Compostos de Bifenilo/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Fígado/enzimologia , Fígado/patologia , Masculino , Camundongos , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fenóis/farmacologia , Fenóis/uso terapêutico , Picratos/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Compostos de Sulfidrila/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
12.
Drug Chem Toxicol ; 35(1): 48-56, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21919597

RESUMO

Here, we compare the influence of molecular structural modifications of diphenyl diselenide (DPDS) and diphenyl ditelluride (DPDT) with their naphthalene analogs, 1-dinapthyl diselenide (1-NapSe)2, 2-dinapthyl diselenide (2-NapSe)2, 1-dinapthyl distelluride (1-NapTe)2, and 2-dinapthyl ditelluride (2-NapTe)2. Fe(II)-induced hepatic thiobarbituric acid reactive species (TBARS) was in the order [(2-NapTe)2] > [(2-NapSe)2] > [(DPDS)] > [(1-NapSe)2] > [(1-NapTe)2]> [(DPDT)]. For sodium nitroprusside (SNP)-induced hepatic TBARS, the order was [(2-NapTe)2] > [(DPDT)] > [(1-NapSe)2] > [(2-NapSe)2] > [(1-NapTe)2] > [(DPDS)]. For Fe(II) and SNP-induced renal TBARS, the orders were [(2-NapTe)2] > [(1-NapTe)2] = [(DPDT)] > [(1-NapSe)2] > [(2-NapSe)2] > [(DPDS)] and [(2-NapTe)2] > [(1-NapTe)2] > [(1-NapSe)2] > [(2-NapSe)2] > [(DPDS)] > [(DPDS)], respectively. The present investigation shows that DPDS was less potent and the change in the organic moiety from an aryl to napthyl group dramatically changed the potency of diselenides. These results suggest that minor changes in the organic moiety of aromatic diselenides can profoundly modify their antioxidant properties. In view of the fact that the pharmacological properties of organochalcogens are linked, at least in part, to their antioxidant properties, it becomes important to explore the pharmacological properties of dinaphtyl diselenides and ditellurides.


Assuntos
Antioxidantes/farmacologia , Derivados de Benzeno/farmacologia , Compostos Organometálicos/farmacologia , Compostos Organosselênicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/química , Derivados de Benzeno/química , Compostos Ferrosos/toxicidade , Nitroprussiato/toxicidade , Compostos Organometálicos/química , Compostos Organosselênicos/química , Relação Estrutura-Atividade
13.
Molecules ; 15(11): 7699-714, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21030914

RESUMO

Since the successful use of the organoselenium drug ebselen in clinical trials for the treatment of neuropathological conditions associated with oxidative stress, there have been concerted efforts geared towards understanding the precise mechanism of action of ebselen and other organoselenium compounds, especially the diorganyl diselenides such as diphenyl diselenide, and its analogs. Although the mechanism of action of ebselen and other organoselenium compounds has been shown to be related to their ability to generally mimic native glutathione peroxidase (GPx), only ebselen however has been shown to serve as a substrate for the mammalian thioredoxin reductase (TrxR), demonstrating another component of its pharmacological mechanisms. In fact, there is a dearth of information on the ability of other organoselenium compounds, especially diphenyl diselenide and its analogs, to serve as substrates for the mammalian enzyme thioredoxin reductase. Interestingly, diphenyl diselenide shares several antioxidant and neuroprotective properties with ebselen. Hence in the present study, we tested the hypothesis that diphenyl diselenide and some of its analogs (4,4'-bistrifluoromethyldiphenyl diselenide, 4,4'-bismethoxy-diphenyl diselenide, 4.4'-biscarboxydiphenyl diselenide, 4,4'-bischlorodiphenyl diselenide, 2,4,6,2',4',6'-hexamethyldiphenyl diselenide) could also be substrates for rat hepatic TrxR. Here we show for the first time that diselenides are good substrates for mammalian TrxR, but not necessarily good mimetics of GPx, and vice versa. For instance, bis-methoxydiphenyl diselenide had no GPx activity, whereas it was a good substrate for reduction by TrxR. Our experimental observations indicate a possible dissociation between the two pathways for peroxide degradation (either via substrate for TrxR or as a mimic of GPx). Consequently, the antioxidant activity of diphenyl diselenide and analogs can be attributed to their capacity to be substrates for mammalian TrxR and we therefore conclude that subtle changes in the aryl moiety of diselenides can be used as tool for dissociation of GPx or TrxR pathways as mechanism triggering their antioxidant activities.


Assuntos
Antioxidantes/metabolismo , Derivados de Benzeno/metabolismo , Glutationa Peroxidase/metabolismo , Mamíferos/metabolismo , Compostos Organosselênicos/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo , Animais , Estrutura Molecular , Oxirredução
14.
Basic Clin Pharmacol Toxicol ; 105(1): 17-23, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19371255

RESUMO

Hypercholesterolaemia and oxidative stress are well-known risk factors in coronary artery diseases. Diphenyl diselenide is a synthetic organoselenium compound that has been shown to have in vitro and in vivo antioxidant properties. In this study, we investigated whether diphenyl diselenide could reduce the hypercholesterolaemia and diminish the tissue oxidative stress in cholesterol-fed rabbits. Twenty-four New Zealand white male rabbits were randomly divided into four groups. Each group was fed a different diet as follows: Control group--regular chow; Cholesterol group--1% cholesterol-enriched diet; diphenyl diselenide group--regular diet supplemented with 10 ppm diphenyl diselenide; and Chol/diphenyl diselenide group--the same cholesterol-rich supplemented with 10 ppm diphenyl diselenide. After 45 days of treatment, the rabbits were killed and the blood, liver, and brain were used for laboratory analysis. The results showed that the serum levels of total cholesterol were markedly increased in cholesterol-fed rabbits and the consumption of diphenyl diselenide decreased these levels approximately twofold in Chol/diphenyl diselenide rabbits (P < 0.05). The intake of diphenyl diselenide by hypercholesterolaemic rabbits diminished the serum and hepatic thiobarbituric acid reactive substances levels as well as the production of reactive oxygen species in the blood and brain (P < 0.05) when compared to the cholesterol group. In addition, diphenyl diselenide supplementation increased hepatic and cerebral delta-aminolevulinic dehydratase activity and hepatic non-protein thiol groups levels despite hypercholesterolaemia (P < 0.05). In summary, the results showed that diphenyl diselenide reduced the hypercholesterolaemia and the oxidative stress in cholesterol-fed rabbits.


Assuntos
Antioxidantes/farmacologia , Derivados de Benzeno/farmacologia , Colesterol na Dieta/administração & dosagem , Colesterol/sangue , Compostos Organosselênicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Sintase do Porfobilinogênio/sangue , Espécies Reativas de Oxigênio/metabolismo , Ração Animal , Animais , Ácido Ascórbico/análise , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Química Encefálica/efeitos dos fármacos , Hipercolesterolemia/induzido quimicamente , Fígado/química , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Coelhos , Distribuição Aleatória , Espécies Reativas de Oxigênio/sangue , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Triglicerídeos/sangue
15.
Brain Res ; 1199: 138-47, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18272143

RESUMO

The present study aimed at investigating the potential in vitro protective effect of the organochalcogenide diphenyl diselenide - (PhSe)2 - against hydrogen peroxide (H2O2)-induced toxicity in rat hippocampal slices. Hippocampal slices were treated for 1 h with H2O2 (2 mM) in the presence or absence of (PhSe)2 (0.1-10 microM). H2O2 treatment significantly decreased cell viability (measured by MTT test) and the co-incubation with (PhSe)(2) (10 microM) significantly blunted such phenomenon. The non permeable thiol compounds dithiothreitol (DTT) (100 microM) or reduced glutathione (GSH) (100 microM), which did not display protective effects against H2O2-induced loss of cell viability per se, significantly improved the protective effects elicited by (PhSe)2. Conversely, the permeable form of GSH (GSH monoethyl ester) was unable to alter the neuroprotection mediated by (PhSe)2. The treatment of rat hippocampal slices with H2O2 also increased the lipid peroxidation and decreased the intracellular GSH levels. Moreover, (PhSe)2 (from 0.1 microM) significantly decreased H2O2-induced lipid peroxidation. Interestingly, H2O2 decreased GSH levels and this phenomenon was partially prevented by (PhSe)2. The potential effects of H2O2 on MAPKs phosphorylation (ERK1/2, p38 MAPK and JNK1/2) were also evaluated. Even though H2O2 (2 mM) did not alter p38 MAPK and JNK1/2 phosphorylation in hippocampal slices, it stimulated ERK1/2 phosphorylation and the co-incubation with (PhSe)2 (10 microM) blocked this effect. Taken together, the present results indicate that (PhSe)2 exerts protective effects against H2O2-induced oxidative damage in hippocampal slices and avoided the increase in ERK1/2 phosphorylation promoted by H2O2. The neuroprotective effect of compound seems to be related to its thiol-peroxidase-like activity and appears to occur at the extracellular milieu because a permeable form of GSH was unable to improve the protective effect of the compound as did the impermeable GSH.


Assuntos
Derivados de Benzeno/farmacologia , Hipocampo/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Fármacos Neuroprotetores/farmacologia , Compostos Organosselênicos/farmacologia , Oxidantes/toxicidade , Animais , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Hipocampo/patologia , Técnicas In Vitro , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Ratos Wistar , Sais de Tetrazólio , Tiazóis , Fatores de Tempo
16.
Basic Clin Pharmacol Toxicol ; 101(1): 47-55, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17577316

RESUMO

Selenium compounds, like diphenyl diselenide (Ph(2)Se(2)), possess glutathione peroxidase (GSHPx)-like activities and other antioxidant properties. The aim of this study was to evaluate the effects of a long-term oral supplementation with Ph(2)Se(2) on various toxicological parameters in rabbits. Adult New Zealand male rabbits were divided into four groups: Group I served as control; Groups II, III and IV received 0.3, 3.0 and 30 p.p.m. of Ph(2)Se(2) pulverized in the chow for 8 months. A number of toxicological parameters were examined in liver, kidney, cerebral cortex and hippocampus, such as delta-aminolaevulinic acid dehydratase (delta-ALA-D), catalase (CAT), GSHPx activities, non-protein thiol (-SH), lipid peroxidation and ascorbic acid levels. The results indicated that supplementation 30 p.p.m. Ph(2)Se(2 )significantly increased delta-ALA-D activity in liver and in cerebral cortex. Non-protein -SH levels were significantly increased in liver but not in kidney, cerebral cortex and hippocampus of rabbits. Ascorbic acid content was significantly lower in the liver and cerebral cortex after supplementation with 30 p.p.m. Ph(2)Se(2). Conversely, no alterations in GSHPx and CAT activities, nor in thiobarbituric acid reactive substances levels were observed in rabbit tissues. These results indicate that oral supplementation with Ph(2)Se(2) is relatively secure in rabbits after 8 months of exposure. The findings encourage further experiments on the potential therapeutic effects of such compound.


Assuntos
Antioxidantes/efeitos adversos , Derivados de Benzeno/efeitos adversos , Encéfalo/metabolismo , Rim/metabolismo , Fígado/metabolismo , Compostos Organosselênicos/efeitos adversos , Animais , Antioxidantes/farmacocinética , Ácido Ascórbico/metabolismo , Derivados de Benzeno/farmacocinética , Catalase/metabolismo , Relação Dose-Resposta a Droga , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos/fisiologia , Masculino , Compostos Organosselênicos/farmacocinética , Sintase do Porfobilinogênio/metabolismo , Coelhos , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...