Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 621(7978): 318-323, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37612502

RESUMO

The Amazon forest carbon sink is declining, mainly as a result of land-use and climate change1-4. Here we investigate how changes in law enforcement of environmental protection policies may have affected the Amazonian carbon balance between 2010 and 2018 compared with 2019 and 2020, based on atmospheric CO2 vertical profiles5,6, deforestation7 and fire data8, as well as infraction notices related to illegal deforestation9. We estimate that Amazonia carbon emissions increased from a mean of 0.24 ± 0.08 PgC year-1 in 2010-2018 to 0.44 ± 0.10 PgC year-1 in 2019 and 0.52 ± 0.10 PgC year-1 in 2020 (± uncertainty). The observed increases in deforestation were 82% and 77% (94% accuracy) and burned area were 14% and 42% in 2019 and 2020 compared with the 2010-2018 mean, respectively. We find that the numbers of notifications of infractions against flora decreased by 30% and 54% and fines paid by 74% and 89% in 2019 and 2020, respectively. Carbon losses during 2019-2020 were comparable with those of the record warm El Niño (2015-2016) without an extreme drought event. Statistical tests show that the observed differences between the 2010-2018 mean and 2019-2020 are unlikely to have arisen by chance. The changes in the carbon budget of Amazonia during 2019-2020 were mainly because of western Amazonia becoming a carbon source. Our results indicate that a decline in law enforcement led to increases in deforestation, biomass burning and forest degradation, which increased carbon emissions and enhanced drying and warming of the Amazon forests.


Assuntos
Dióxido de Carbono , Sequestro de Carbono , Conservação dos Recursos Naturais , Política Ambiental , Aplicação da Lei , Floresta Úmida , Biomassa , Brasil , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Política Ambiental/legislação & jurisprudência , Atmosfera/química , Incêndios Florestais/estatística & dados numéricos , Conservação dos Recursos Naturais/estatística & dados numéricos , El Niño Oscilação Sul , Secas/estatística & dados numéricos
2.
PLoS One ; 17(4): e0256052, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35442977

RESUMO

The future of land use and cover change in Brazil, particularly due to deforestation and forest restoration processes, is critical for the future of global climate and biodiversity, given the richness of its five biomes. These changes in Brazil depend on the interlink between global factors due to its role as one of the main exporters of commodities globally and the national to local institutional, socioeconomic, and biophysical contexts. Aiming to develop scenarios that consider the balance between global (e.g., GDP growth, population growth, per capita consumption of agricultural products, international trade policies, and climatic conditions) and local factors (e.g., land use, agrarian structure, agricultural suitability, protected areas, distance to roads, and other infrastructure projects), a new set of land-use change scenarios for Brazil were developed that aligned with the global structure Shared Socioeconomic Pathways (SSPs) and Representative Concentration Pathway (RCPs) developed by the global change research community. The narratives of the new scenarios align with SSP1/RCP 1.9 (Sustainable development scenario), SSP2/RCP 4.5 (Middle of the road scenario), and SSP3/RCP 7.0 (Strong inequality scenario). The scenarios were developed by combining the LuccME spatially explicit land change allocation modeling framework and the INLAND surface model to incorporate the climatic variables in water deficit. Based on detailed biophysical, socioeconomic, and institutional factors for each biome in Brazil, we have created spatially explicit scenarios until 2050, considering the following classes: forest vegetation, grassland vegetation, planted pasture, agriculture, a mosaic of small land uses, and forestry. The results aim to detail global models regionally. They could be used regionally to support decision-making and enrich the global analysis.


Assuntos
Comércio , Internacionalidade , Agricultura , Brasil , Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Florestas
3.
Nature ; 595(7867): 388-393, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34262208

RESUMO

Amazonia hosts the Earth's largest tropical forests and has been shown to be an important carbon sink over recent decades1-3. This carbon sink seems to be in decline, however, as a result of factors such as deforestation and climate change1-3. Here we investigate Amazonia's carbon budget and the main drivers responsible for its change into a carbon source. We performed 590 aircraft vertical profiling measurements of lower-tropospheric concentrations of carbon dioxide and carbon monoxide at four sites in Amazonia from 2010 to 20184. We find that total carbon emissions are greater in eastern Amazonia than in the western part, mostly as a result of spatial differences in carbon-monoxide-derived fire emissions. Southeastern Amazonia, in particular, acts as a net carbon source (total carbon flux minus fire emissions) to the atmosphere. Over the past 40 years, eastern Amazonia has been subjected to more deforestation, warming and moisture stress than the western part, especially during the dry season, with the southeast experiencing the strongest trends5-9. We explore the effect of climate change and deforestation trends on carbon emissions at our study sites, and find that the intensification of the dry season and an increase in deforestation seem to promote ecosystem stress, increase in fire occurrence, and higher carbon emissions in the eastern Amazon. This is in line with recent studies that indicate an increase in tree mortality and a reduction in photosynthesis as a result of climatic changes across Amazonia1,10.


Assuntos
Ciclo do Carbono , Sequestro de Carbono , Mudança Climática/estatística & dados numéricos , Conservação dos Recursos Naturais/estatística & dados numéricos , Florestas , Atmosfera/química , Dióxido de Carbono/análise , Monóxido de Carbono/análise , Atividades Humanas , Fotossíntese , Chuva , Estações do Ano , Temperatura
4.
Sci Total Environ ; 746: 140998, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32763600

RESUMO

Biological nitrogen fixation (BNF) supports terrestrial primary productivity and plays key roles in mediating human-induced changes in global nitrogen (N) and carbon cycling. However, there are still critical uncertainties in our understanding of the amount of BNF occurring across terrestrial ecosystems, and of how terrestrial BNF will respond to global change. We synthesized BNF data from Latin America, a region reported to sustain some of the highest BNF rates on Earth, but that is underrepresented in previous data syntheses. We used meta-analysis and modeling approaches to estimate BNF rates across Latin America's major biomes and to evaluate the potential effects of increased N deposition and land-use change on these rates. Unmanaged tropical and subtropical moist forests sustained observed and predicted total BNF rates of 10 ± 1 and 14 ± 1 kg N ha-1 y-1, respectively, supporting the hypothesis that these forests sustain lower BNF rates than previously thought. Free-living BNF accounted for two-thirds of the total BNF in these forests. Despite an average 30% reduction of free-living BNF in response to experimental N-addition, our results suggest free-living BNF rate responses to current and projected N deposition across tropical and subtropical moist forests are small. In contrast, the conversion of unmanaged ecosystems to crop and pasture lands increased BNF rates across all terrestrial biomes, mostly in savannas, grasslands, and dry forests, increasing BNF rates 2-fold. The information obtained here provides a more comprehensive understanding of BNF patterns for Latin America.


Assuntos
Ecossistema , Fixação de Nitrogênio , Florestas , Humanos , América Latina , Nitrogênio
5.
Carbon Balance Manag ; 14(1): 11, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31482475

RESUMO

BACKGROUND: Brazilian Amazon forests contain a large stock of carbon that could be released into the atmosphere as a result of land use and cover change. To quantify the carbon stocks, Brazil has forest inventory plots from different sources, but they are unstandardized and not always available to the scientific community. Considering the Brazilian Amazon extension, the use of remote sensing, combined with forest inventory plots, is one of the best options to estimate forest aboveground biomass (AGB). Nevertheless, the combination of limited forest inventory data and different remote sensing products has resulted in significant differences in the spatial distribution of AGB estimates. This study evaluates the spatial coverage of AGB data (forest inventory plots, AGB maps and remote sensing products) in undisturbed forests in the Brazilian Amazon. Additionally, we analyze the interconnection between these data and AGB stakeholders producing the information. Specifically, we provide the first benchmark of the existing field plots in terms of their size, frequency, and spatial distribution. RESULTS: We synthesized the coverage of forest inventory plots, AGB maps and airborne light detection and ranging (LiDAR) transects of the Brazilian Amazon. Although several extensive forest inventories have been implemented, these AGB data cover a small fraction of this region (e.g., central Amazon remains largely uncovered). Although the use of new technology such as airborne LiDAR cover a significant extension of AGB surveys, these data and forest plots represent only 1% of the entire forest area of the Brazilian Amazon. CONCLUSIONS: Considering that several institutions involved in forest inventories of the Brazilian Amazon have different goals, protocols, and time frames for forest surveys, forest inventory data of the Brazilian Amazon remain unstandardized. Research funding agencies have a very important role in establishing a clear sharing policy to make data free and open as well as in harmonizing the collection procedure. Nevertheless, the use of old and new forest inventory plots combined with airborne LiDAR data and satellite images will likely reduce the uncertainty of the AGB distribution of the Brazilian Amazon.

6.
Environ Res ; 144(Pt B): 49-63, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26604078

RESUMO

Tropical forests in South America play a key role in the provision of ecosystem services such as carbon sinks, biodiversity conservation, and global climate regulation. In previous decades, Bolivian forests have mainly been deforested by the expansion of agricultural frontier development, driven by the growing demands for beef and other productions. In the mid-2000s the Movimiento al Socialismo (MAS) party rose to power in Bolivia with the promise of promoting an alternative development model that would respect the environment. The party passed the world's first laws granting rights to the environment, which they termed Mother Earth (Law No. 300 of 2012), and proposed an innovative framework that was expected to develop radical new conservation policies. The MAS conservationist discourse, policies, and productive practices, however, have since been in permanent tension. The government continues to guarantee food production through neo-extractivist methods by promoting the notion to expand agriculture from 3 to 13 million ha, risking the tropical forests and their ecosystem services. These actions raise major environmental and social concerns, as the potential impacts of such interventions are still unknown. The objective of this study is to explore an innovative land use modeling approach to simulate how the growing demand for land could affect future deforestation trends in Bolivia. We use the LuccME framework to create a spatially-explicit land cover change model and run it under three different deforestation scenarios, spanning from the present-2050. In the Sustainability scenario, deforestation reaches 17,703,786 ha, notably in previously deforested or degraded areas, while leaving forest extensions intact. In the Middle of the road scenario, deforestation and degradation move toward new or paved roads spreading across 25,698,327 ha in 2050, while intact forests are located in Protected Areas (PAs). In the Fragmentation scenario, deforestation expands to almost all Bolivian lowlands reaching 37,944,434 ha and leaves small forest patches in a few PAs. These deforestation scenarios are not meant to predict the future but to show how current and future decisions carried out by the neo-extractivist practices of MAS government could affect deforestation and carbon emission trends. In this perspective, recognizing land use systems as open and dynamic systems is a central challenge in designing efficient land use policies and managing a transition towards sustainable land use.


Assuntos
Agricultura , Conservação dos Recursos Naturais , Agricultura Florestal , Florestas , Bolívia , Modelos Teóricos , Análise Espacial
7.
Br J Ophthalmol ; 96(12): 1456-61, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23038764

RESUMO

AIMS: To assess the impact of different oxygenation policies on the rate and severity of retinopathy of prematurity (ROP). METHODS: Between January 2003 and December 2006, infants of 1500 g birthweight (BW) or less and/or 32 weeks gestational age (GA) or less, and larger, more mature infants with risk factors for ROP were examined through three different time periods: period 1: high target oxygen saturation levels (88-96%) and treatment at threshold ROP; period 2: low target oxygen saturation levels (83-93%) and treatment at threshold ROP; period 3: low target oxygen saturation and treatment at type 1 ROP. RESULTS: Type 1 ROP was detected more frequently in babies of 32 weeks GA or less (50/365, 13.7%) than in more mature babies (15/1167, 1.3%; p<0.001). The rate of type 1 ROP in period 1 was 6.9%; period 2, 3.6% and period 3, 1.8%. Rates of stage 3 ROP declined over time in both BW/GA groups (from 9.0% to 4.1% to 2.0%) as did rates of plus disease (from 7.5% to 3.6% to 1.8%). Mean BW and GA declined from period 1 to period 3, and death rates remained unchanged. 74.4% of babies received all the examinations required; 48.1% of treatments were undertaken after discharge from the neonatal unit. CONCLUSIONS: Lower target oxygen saturation was associated with a lower rate of severe ROP without increasing mortality, and changed the characteristics of affected babies. Screening criteria need to remain wide enough to identify all babies at risk of ROP needing treatment.


Assuntos
Unidades de Terapia Intensiva Neonatal , Consumo de Oxigênio/fisiologia , Oxigenoterapia/normas , Guias de Prática Clínica como Assunto , Retinopatia da Prematuridade/terapia , Argentina/epidemiologia , Seguimentos , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Recém-Nascido de muito Baixo Peso , Retinopatia da Prematuridade/metabolismo , Retinopatia da Prematuridade/mortalidade , Estudos Retrospectivos , Fatores de Risco , Taxa de Sobrevida/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...