Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Jpn J Radiol ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38720059

RESUMO

This study provides a comprehensive evaluation of the occupational radiation exposure faced by healthcare professionals during Endoscopic Retrograde Cholangiopancreatography (ERCP) procedures. Utilizing an anthropomorphic RANDO phantom equipped with Thermoluminescent Dosimeters (TLDs), we replicated ERCP scenarios to measure radiation doses received by medical staff. The study meticulously assessed radiation exposure in various corresponding body regions typically occupied by medical staff during ERCP, with a focus on eyes, thyroid, hands, and reproductive corresponding organ regions. The findings revealed significant variations in radiation doses across different body parts, highlighting areas of higher exposure and underscoring the need for improved protective measures and procedural adjustments. The effective radiation doses were calculated using standard protocols, considering the varying levels of protection offered by lead aprons and thyroid shields. The results demonstrate the substantial radiation exposure experienced by healthcare staff, particularly in regions not adequately shielded. This study emphasizes the necessity for enhanced radiation safety protocols in clinical settings, advocating for advanced protective equipment, training in radiation safety, and the exploration of alternative imaging modalities. The findings have crucial implications for both patient and staff safety, ensuring the continued efficacy and safety of ERCP and similar interventional procedures. This research contributes significantly to the field of occupational health and safety in interventional radiology, providing vital data for the development of safer medical practices.

2.
Heliyon ; 10(4): e25932, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38370260

RESUMO

In this study, it was aimed to evaluate the effect of ethanol extract of Annona Muricata (AM) leaves in the prevention of brain damage caused by ionizing radiation (IR). This study was conducted in the Experimental Animal Research Unit of a university with 28 adults female Wistar Albino rats. The experimental groups were as follows: Control group (n = 8), AM group (n = 6), IR group (n = 8), AM + IR group (n = 6). In the IR group, astrocyte hypertrophy, microglial reaction and inflammatory reaction levels were significantly higher than the control and AM groups (P < 0.001). Edema was significantly higher in the IR group compared to the control group (P=0.001). The MDA of the IR group was significantly higher compared to the control group and AM group (P=0.031, P=0.006, respectively). The MDA of the AM + IR group was significantly higher than the AM group (P=0.039). Our findings show that histomorphology and oxidant damage caused by IR can be ameliorated using AM, as demonstrated by the comparison of the controls to AM + IR recipients, which showed similar histomorphology and oxidant damage levels.

3.
Radiography (Lond) ; 30(1): 282-287, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38041916

RESUMO

INTRODUCTION: The utilization of radiation shielding material positioned between the both breasts are crucial for the reduction of glandular dose and the safeguarding of the contralateral breast during mammographic procedures. This study proposes an alternative substance for shielding the contralateral breast from radiation exposure during mammography screening. METHODS: In this study, we present an analysis of the shielding effectiveness of transparent glass that has been doped with Tantalum (V) oxide encoded as BTZT6. The evaluation of this shielding material was conducted using the MCNPX code, specifically for the ipsilateral and contralateral breasts. The design of the left and right breast phantoms involved the creation of three-layer heterogeneous breast phantoms, consisting of varying proportions of glandular tissue (25%, 50%, and 75%). The design of BTZT6 and lead-acrylic shielding screens is implemented using the MCNPX code. The comparative analysis of dose outcomes is conducted to assess the protective efficacy of BTZT6 and lead-acrylic shielding screens. RESULTS: The utilization of BTZT6 shielding material resulted in a reduction in both breast dose and skin dose exposure when compared to the lead-acrylic shield. CONCLUSION: Based on the findings acquired, the utilization of BTZT6 shielding material screens during mammography procedures involving X-rays with energy levels ranging from 26 to 30 keV is associated with a decrease in radiation dose. IMPLICATIONS FOR PRACTICE: It can be inferred that the utilization of BTZT6 demonstrates potential efficacy in mitigating excessive radiation exposure to the breasts and facilitating the quantification of glandular doses in mammography procedures.


Assuntos
Tantálio , Tomografia Computadorizada por Raios X , Humanos , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Mamografia/métodos , Mama/diagnóstico por imagem
4.
Heliyon ; 9(7): e17838, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37456003

RESUMO

We report the functional assessment of tungsten (VI) oxide on gamma-ray attenuation properties of 60Sb2O3-(40-x)NaPO3-xWO3 antimony glasses. The elemental mass-fractions and glass-densities of each glass sample are specified separately for the MCNPX Monte Carlo code. In addition to fundamental gamma absorption properties, Transmission Factors throughout a broad radioisotope energy range were measured. According to findings, holmium (Ho) incorporation into the glass structure resulted in a net increase of 0.3406 g/cm3, whereas cerium (Ce) addition resulted in a net increase of 0.2047 g/cm3. The 40% WO3 reinforced S7 sample was found to have the greatest LAC value, even though seven glass samples exhibited identical behavior. The S2 sample had the lowest HVL values among the glass groups evaluated in this work, computed in the energy range of 0.015-15 MeV. The lowest EBF and EABF values were reported for 40% WO3 reinforced S7 sample with the highest LAC and density values. According to the findings of this research, WO3 will likely make a significant contribution to the gamma ray absorption properties of antimony glasses, which are employed for optical and structural modification. Therefore, it can be concluded that WO3 may be treated monotonically and can be employed successfully in circumstances where gamma-ray absorption characteristics, optical properties, and structural qualities need to be enhanced.

5.
Radiat Phys Chem Oxf Engl 1993 ; 211: 111025, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37250685

RESUMO

Introduction: CTPA stands for computed tomography pulmonary angiography. CTPA is an X-ray imaging that combines X-rays and computer technology to create detailed images of the pulmonary arteries and veins in the lungs. This test diagnoses and monitors conditions like pulmonary embolism, arterial blockages, and hypertension. Coronavirus (COVID-19) has threatened world health over the last three years. The number of (CT) scans increased and played a vital role in diagnosing COVID-19 patients, including life-threatening pulmonary embolism (PE). This study aimed to assess the radiation dose resulted from CTPA for COVID-19 patients. Methods: Data were collected retrospectively from CTPA examinations on a single scanner in 84 symptomatic patients. The data collected included the dose length product (DLP), volumetric computed tomography dose index (CTDIvol), and size-specific dose estimate (SSDE). The organ dose and effective dose were estimated using VirtualDose software. Results: The study population included 84 patients, 52% male and 48% female, with an average age of 62. The average DLP, CTDIvol, and SSDE were 404.2 mGy cm, 13.5 mGy, and 11.6 mGy\, respectively. The mean effective doses (mSv) for males and females were 3.01 and 3.29, respectively. The maximum to minimum organ doses (mGy) between patients was 0.8 for the male bladder and 7.33 for the female lung. Conclusions: The increase in CT scans during the COVID-19 pandemic required close dose monitoring and optimization. The protocol used during CTPA should guarantee a minimum radiation dose with maximum patient benefits.

6.
Front Public Health ; 11: 1171209, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064659

RESUMO

Introduction: A lead-acrylic protective screen is suggested to reduce radiation exposure to the unexposed breast during mammography. The presence of toxic lead in its structure may harm the tissues with which it comes in contact. This study aimed to design a CdO-rich quaternary tellurite glass screen (C40) and evaluate its efficiency compared to the Lead-Acrylic protective screen. Methods: A three-layer advanced heterogeneous breast phantom designed in MCNPX (version 2.7.0) general-purpose Monte Carlo code. Lead acrylic and C40 shielding screens were modeled in the MCNPX and installed between the right and left breast. The reliability of the absorption differences between the lead acrylic and C40 glass were assessed. Results and discussion: The results showed that C40 protective glass screen has much superior protection properties compared to the lead acrylic protective screen. The amount of total dose absorbed in the unexposed breast for C40 was found to be much less than that for lead-based acrylic. The protection provided by the C40 glass screen is 35-38% superior to that of the Lead-Acrylic screen. The C40 offer the opportunity to avoid the toxic Pb in the structure of Lead-Acrylic material and may be utilized for mammography to offer superior radioprotection to Lead-Acrylic and significantly lower the dose amount in the unexposed breast. It can be concluded that transparent glass screens may be utilized for radiation protection purposes in critical diagnostic radiology applications through mammography.


Assuntos
Proteção Radiológica , Proteção Radiológica/métodos , Doses de Radiação , Método de Monte Carlo , Benchmarking , Reprodutibilidade dos Testes , Mamografia/métodos
7.
Heliyon ; 9(4): e14881, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37025762

RESUMO

We report the critical optical properties such as Average Visible Transmittance (AVT), colour, Color Rendering Index (CRI), and Correlated Color Temperature (CCT) of a multicomponent glass system with a nominal composition of 50TeO2-30B2O3-(20-x)Li2O-xCeO2 (x = 0,0.5,1,2,3,4,5,10,15,20 mol%). Various advanced theoretical approaches as well as calculations are utilized in terms of determining the optical properties of studied glasses. The maximum transmittance and AVT values of the glass system exceeded 80% and 79.59%, respectively. The colour coordinates are found extremely near to D65 and the achromatic point without CeO2 contribution. According to our results, the current system has a promising ability to be utilized for coloured window applications in terms of both AVT and colour with 2% CeO2 doping. Our results showed that, the CeO2 additive is able to move the glass colour straight into the red spectrum by shifting the transmittance spectrum to the long-wavelength portion of the visible spectrum. With 10% CeO2 doping, opacity in the visible area and permeability in the NIR region are obtained, and the CCT value changes from 5002 K to 2560 K. It can be concluded that a filter system with modifiable NIR or red optical characteristics may be produced through the CeO2 alterations in borotellurite glass systems.

8.
Heliyon ; 9(3): e14274, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36950638

RESUMO

This study's primary objective is to provide the preliminary findings of novel research on the design of Indium (III) oxide-reinforced glass container that were thoroughly developed for the purpose of a nuclear material container for transportation and waste management applications. The shielding characteristics of an Indium (III) oxide-reinforced glass container with a certain elemental composition against the 60Co radioisotope was thoroughly evaluated. The energy deposition in the air surrounding the designed portable glass containers is measured using MCNPX general-purpose Monte Carlo code. Simulation studies were carried out using Lenovo-P620 workstation and the number of tracks was defined as 108 in each simulation phase. According to results, the indium oxide-doped C6 (TZI8) container exhibits superior protective properties compared to other conventional container materials such as 0.5Bitumen-0.5 Cement, Pb Glass composite, Steel-Magnetite concrete. In addition to its superiority in terms of nuclear safety, it is proposed that the source's simultaneous observation and monitoring, as well as the C6 (TZI8) glass structure's transparency, be underlined as significant advantages. High-density glasses, which may replace undesirable materials such as concrete and lead, provide several advantages in terms of production ease, non-toxic properties, and resource monitoring. In conclusion, the use of Indium (III) oxide-reinforced glass with its high transparency and outstanding protection properties may be a substantial choice in places where concrete is required to ensure the safety of nuclear materials.

9.
Front Public Health ; 11: 1136864, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36935709

RESUMO

Introduction: We report the breast and chest radiation dose assessment for mammographic examinations using a three-layer heterogeneous breast phantom through the MCNPX Monte Carlo code. Methods: A three-layer heterogeneous phantom along with compression plates and X-ray source are modeled. The validation of the simulation code is obtained using the data of AAPM TG-195 report. Deposited energy amount as a function of increasing source energy is calculated over a wide energy range. The behavioral changes in X-ray absorption as well as transmission are examined using the F6 Tally Mesh extension of MCNPX code. Moreover, deposited energy amount is calculated for modeled body phantom in the same energy range. Results and discussions: The diverse distribution of glands has a significant impact on the quantity of energy received by the various breast layers. In layers with a low glandular ratio, low-energy primary X-ray penetrability is highest. In response to an increase in energy, the absorption in layers with a low glandular ratio decreased. This results in the X-rays releasing their energy in the bottom layers. Additionally, the increase in energy increases the quantity of energy absorbed by the tissues around the breast.


Assuntos
Mamografia , Método de Monte Carlo , Mamografia/métodos , Doses de Radiação , Radiografia
10.
PLoS One ; 17(12): e0279607, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36574426

RESUMO

RATIONALE AND OBJECTIVES: Radiology personnel must have good knowledge, experience and adherence to radiation protection and infection control practices to ensure patient safety and prevent the further spread of the COVID-19 virus. This study analysed compliance and adherence to radiation protection and infection control during COVID-19 mobile radiography. METHODS: A cross-sectional using online survey was conducted from September to December 2021. Data on demographic characteristics, adherence to radiation protection and infection control practice were collected during mobile radiography for COVID-19 patients in the study. A random sample of the radiographers working in COVID-19 centres in the United Arab Emirates. RESULTS: Responses were received from 140 participants, with a response rate of 87.5%. Females were the predominant participants (n = 81; 58%). Participants aged ages between 18-25 years (n = 46; 33%) and 26-35 years (n = 42; 30%), (n = 57; 41%) had less than five years of experience, followed by participants who had more than 15 years (n = 38; 27%). Most participants (n = 81; 57.9%) stated that they performed approximately 1-5 suspected or confirmed COVID-19 cases daily. The participants had moderate to high adherence to radiation protection, with a mean and standard deviation of 42.3 ± 6.28. Additionally, infection control adherence was high, with 82% of the participants showing high adherence. CONCLUSION: Continuous guidance, training and follow-up are recommended to increase adherence and compliance to radiation protection and infection control compliance. Educational institutions and professional organisations must collaborate to provide structured training programmes for radiology practitioners to overcome the practice and knowledge gap.


Assuntos
COVID-19 , Radiologia , Feminino , Humanos , Idoso , Adolescente , Adulto Jovem , Adulto , COVID-19/epidemiologia , COVID-19/prevenção & controle , Estudos Transversais , SARS-CoV-2 , Controle de Infecções
11.
Front Public Health ; 10: 964104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211693

RESUMO

Purpose: Diagnostic Reference Level (DRL) is a practical tool for radiation dose optimization, yet it does not indicate the patient size or image quality. The Acceptable Quality Dose (AQD) introduced to address the limitations of the DRLs and it is based on image quality, radiation dose, and patient weight. The aim of this study is to establish the AQD for adult patients' undergoing Computed Tomography (CT) examinations (Head, chest, abdomen). Methods: This study is conducted in the four main hospitals at the Ministry of Health and Prevention. Patient information and exposure parameters were extracted. All the acceptable images are scored for their quality assessments. Data is classified as seven weight groups, <50, 50-59, 60-69, 70-79, 80-89, 90-99, and ≥100 kg. The mean ± SD, median, and 75th are calculated for the CTDIvol and DLP for each weight group per examination. Results: Out of 392, 358 CT examinations are scored with acceptable quality. The median CTDIvol values for the weight groups are obtained as 24.6, 25.4, 25.4, 25.0, 26.0, 27.0, and 29.0 mGy. Moreover, median DLP values are obtained as 576.7, 601.0, 616.5, 636.1, 654.0, 650.0, 780.0, and 622.5 mGy.cm, respectively, for head CT without Contrast Media (CM). Similar calculation for head CT with (CM), chest without CM, abdomen without CM, and chest and abdomen (with and without CM) CTs are presented. Conclusion: Images with bad, unacceptable and higher than necessary qualities contribute to increasing patient dose and increasing the DRLs. The AQD for the selected examinations were lower than the proposed DRLs in the United Arab Emirates. The integration of image quality and patients size in the assessment of the AQD values provide effective model to compare radiation dose indices within facility and compare with others. The obtained results may be useful in terms of improving dose and the diagnostic quality in the national and international levels.


Assuntos
Meios de Contraste , Tomografia Computadorizada por Raios X , Adulto , Humanos , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Emirados Árabes Unidos
12.
Heliyon ; 8(10): e10839, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36247126

RESUMO

The nuclear spectroscopy method has long been used for advanced studies on nuclear physics. In order to decrease costs and increase the efficiency of nuclear radiation investigations, quick and efficient solutions are required. The purpose of this research was to calculate the whole energy peak efficiency values for a range of gamma-ray energies, from 30.973 keV to 1408 keV, at various source-detector distances using the MCNPX Monte Carlo code, which is extensively used in nuclear medicine, industry, and scientific research. As a result, the modeled detectors' full-energy peak efficiencies were calculated and compared to both experimental data and Monte Carlo simulations. Experiment results and prior studies using Monte Carlo simulations were found to be very consistent with these results. The counting efficiency against source-detector distance is then calculated using the modeled detectors. The data we have show that LaBr3(Ce) has outstanding detection properties. This study's findings might be used to improve the design of detectors for use in wide range of high-tech gamma spectroscopy and nuclear research applications.

13.
Front Public Health ; 10: 892789, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968466

RESUMO

Purpose: This study aimed to evaluate Artificial Neural Network (ANN) modeling to estimate the significant dose length product (DLP) value during the abdominal CT examinations for quality assurance in a retrospective, cross-sectional study. Methods: The structure of the ANN model was designed considering various input parameters, namely patient weight, patient size, body mass index, mean CTDI volume, scanning length, kVp, mAs, exposure time per rotation, and pitch factor. The aforementioned examination details of 551 abdominal CT scans were used as retrospective data. Different types of learning algorithms such as Levenberg-Marquardt, Bayesian and Scaled-Conjugate Gradient were checked in terms of the accuracy of the training data. Results: The R-value representing the correlation coefficient for the real system and system output is given as 0.925, 0.785, and 0.854 for the Levenberg-Marquardt, Bayesian, and Scaled-Conjugate Gradient algorithms, respectively. The findings showed that the Levenberg-Marquardt algorithm comprehensively detects DLP values for abdominal CT examinations. It can be a helpful approach to simplify CT quality assurance. Conclusion: It can be concluded that outcomes of this novel artificial intelligence method can be used for high accuracy DLP estimations before the abdominal CT examinations, where the radiation-related risk factors are high or risk evaluation of multiple CT scans is needed for patients in terms of ALARA. Likewise, it can be concluded that artificial learning methods are powerful tools and can be used for different types of radiation-related risk assessments for quality assurance in diagnostic radiology.


Assuntos
Inteligência Artificial , Tomografia Computadorizada por Raios X , Teorema de Bayes , Estudos Transversais , Humanos , Doses de Radiação , Estudos Retrospectivos , Medição de Risco , Tomografia Computadorizada por Raios X/métodos
14.
Radiat Prot Dosimetry ; 198(1-2): 44-52, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35039861

RESUMO

Electronic image cropping and poor collimation practices are used by some radiographers during paediatric radiography. Advantages of collimation should be investigated to disseminate convenient use among radiographers and create awareness. The aim of this study was to use Monte Carlo simulation to investigate the extent of the effect of collimation on the absorbed organ dose in neonates undergoing anterior-posterior chest examination. The minimum field size recommended by the European guidelines was calculated experimentally using a neonate phantom. A PCXMC version 2.0 simulation calculated the organ and effective doses at the minimum field size and at different field sizes. Increasing the field size by 1 cm in the head-to-feet direction increases the dose to the urinary bladder and prostate, whereas increasing the field size by 1 cm on all sides increases the dose to the upper limbs, ovaries, testicles and prostate. The use of an optimal field size reduces organ doses for neonates undergoing chest X-ray. Cropping X-ray images to reduce unnecessarily large field sizes results in unnecessary patient dosages and should be avoided. The primary beam should be restricted to expose only the area of interest, and image cropping should be discouraged.


Assuntos
Método de Monte Carlo , Criança , Simulação por Computador , Humanos , Recém-Nascido , Masculino , Imagens de Fantasmas , Doses de Radiação , Radiografia
15.
Materials (Basel) ; 14(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34947296

RESUMO

The direct influence of La3+ ions on the gamma-ray shielding properties of cobalt-doped heavy metal borate glasses with the chemical formula 0.3CoO-(80-x)B2O3-19.7PbO-xLa2O3: x = 0, 0.5, 1, 1.5, and 2 mol% was examined herein. Several significant radiation shielding parameters were evaluated. The glass density was increased from 3.11 to 3.36 g/cm3 with increasing La3+ ion content from 0 to 2 mol%. The S5 glass sample, which contained the highest concentration of La3+ ions (2 mol%), had the maximum linear (µ) and mass (µm) attenuation coefficients for all photon energies entering, while the S1 glass sample free of La3+ ions possessed the minimum values of µ and µm. Both the half value layer (T1/2) and tenth value layer (TVL) of all investigated glasses showed a similar trend of (T1/2, TVL)S1 > (T1/2, TVL)S2 > (T1/2, TVL)S3 > (T1/2, TVL)S4 > (T1/2, TVL)S5. Our results revealed that the S5 sample had the highest effective atomic number (Zeff) values over the whole range of gamma-ray energy. S5 had the lowest exposure (EBF) and energy absorption (EABF) build-up factor values across the whole photon energy and penetration depth range. Our findings give a strong indication of the S5 sample's superior gamma-ray shielding characteristics due to the highest contribution of lanthanum oxide.

16.
Radiography (Lond) ; 27 Suppl 1: S83-S87, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34364784

RESUMO

INTRODUCTION: The integration of AI in medical imaging has tremendous exponential growth, especially in image production, image processing and image interpretation. It is expected that radiographers working across all imaging modalities have adequate knowledge as they are part of the end-user team. The current study aimed to investigate the knowledge, willingness and challenges facing the Magnetic Resonance Imaging (MRI) technologists in the integration of Artificial Intelligence (AI) into MRI practice. METHODS: Total of 120 participants were recruited using a snowball sampling technique. A two-phase study was undertaken using survey and focus group discussion (FGD) to capture participants' knowledge, interpretations, needs and obstacles toward AI integrations in MRI practice. The survey and FGD provided the base to understand the participant's' knowledge, acceptance and needs for AI. RESULTS: Results showed medium to high knowledge, excitement about AI integration without disturbance of MRI practice. Participants thought that AI can improve MRI protocol selection (91.8%), reduce the scan time (65.3%), and improve image post-processing (79.5%). Education and learning resources concerning AI were the main obstacles facing MRI technologists. CONCLUSION: MRI technologists have the knowledge and possess basic technical information. The application of AI in MRI practice might greatly influence and improve MRI technologist's work. A structured and professional program should be integrated in both undergraduate and continuous education to prepare for effective AI implementation. IMPLICATIONS FOR PRACTICE: Application of AI in MRI can be used in many aspects, such as optimize image quality and avoidance of image artifacts. Moreover, AI can play an important role in patient's safety at the MRI unit to reduce incidents. Education, infrastructure, and knowledge of end-users are keys for the incorporation of AI use, development and optimisation.


Assuntos
Inteligência Artificial , Radiologia , Pessoal Técnico de Saúde , Humanos , Imageamento por Ressonância Magnética , Radiografia
17.
Health Technol (Berl) ; 11(5): 1045-1050, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34377625

RESUMO

Assessing the current Artificial intelligence (AI) situation is a crucial step towards its implementation into radiology practice. The study aimed to assess radiographer willingness to accept AI in radiology work practice and the impact of AI in work performance. An exploratory cross-sectional online survey conducted for radiographers working within the Middle East and India was conducted from May-August 2020. A previously validated survey used to obtain radiographer's demographics, knowledge, perceptions, organization readiness, and challenges of integrating AI into radiology. The survey was accessible for radiographers and distributed through the societies page. The survey was completed by 549 radiographers distributed as (77.6%, n = 426) from the Middle East while (22.4%, n = 123) from India. A majority (86%, n = 773) agreed that AI currently plays an important role in radiology and (88.0%, n = 483) expected that AI would play a role in radiology practice and image production. The challenges for AI implementation in practice were developing AI skills (42.8%, n = 235) and AI knowledge development (37.0%, n = 203). Participants showed high interest to integrate AI in under and postgraduate curriculum. There is excitement about what AI could offer, but education input is a requirement. Fears are expressed about job security and how radiology may work across all ages and educational backgrounds. Radiographers become aware of AI role and challenges, which can be improved by education and training.

18.
Radiat Prot Dosimetry ; 196(1-2): 10-16, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34423365

RESUMO

The present study compares three different multidetector CT (MDCT) scanners for routine brain imaging in terms of image quality and radiation doses. The volume CT dose index (CTDIvol), dose-length product (DLP), and effective dose (E) were calculated. Subjective image assessment was obtained based on a scale ranging from 1 (unacceptable) to 5 (optimum). All images scored 3.5 or over, with the 160-slice MDCT images being favoured. For the 4-, 16- and 160-slice MDCT scanners, the respective median values for CTDIvol were 57 mGy, 41 mGy, and 28 mGy; DLP values were 901 mGy.cm, 680 mGy.cm, and 551 mGy.cm; and effective doses were 2 mSv, 1.5 mSv, and 1 mSv, respectively. Compared to the 160-slice MDCT, the dose values for the 4- and 16-slice units were significantly greater. In practice, the CT modality used must be carefully selected to avoid elevated radiation doses and maintain image quality.


Assuntos
Cabeça , Tomografia Computadorizada Multidetectores , Tomografia Computadorizada de Feixe Cônico , Cabeça/diagnóstico por imagem , Doses de Radiação , Tomógrafos Computadorizados
19.
Appl Radiat Isot ; 176: 109841, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34214913

RESUMO

OBJECTIVE: In this article, IDAC-Dose2.1 and OLINDA computer codes are compared as they are the most widely used software tools for internal dosimetry assessment at the present time. OLINDA/EXM personal computer code was created as a replacement for the widely used MIRDOSE3.1 code. IDAC-Dose2.1 was developed based on the ICRP specific absorbed fractions and computational framework of internal dose assessment given for reference adults in ICRP Publication 133. IDAC uses cumulated activities per administered activity in hours and calculates the absorbed dose and the effective dose. The program calculates the dose in the Eckerman stylized family phantoms. It is useful in standardizing and automating internal dose calculations, assessing doses in clinical trials with radiopharmaceuticals, making theoretic calculations for existing pharmaceuticals, teaching, and other purposes. METHODS: To produce such a comparison, the results of this work were compared with available published data in the literature on radiopharmaceuticals. Radiopharmaceuticals with 89Zr, 153Sm, 177Lu radionuclides are used as the basis for the comparison. 89Zr, 153Sm, 177Lu radionuclides are regarded as the future of radiopharmaceutical treatment. For 89Zr, two different labelled carriers, Zr-89_cMAb U36 and Zr-89 Panitumumab, were used on patients. RESULTS: The results show a clear difference in terms of absorbed dose of the Zr-89 radiopharmaceuticals for red bone marrow when calculated by IDAC-Dose2.1 (0.76 mGy/MBq), while the estimated absorbed dose in literature results is 0.07 mGy/MBq and 0.14 mGy/MBq when the calculation is done by OLINDA program. In the case of 177Lu-EDTMP, the absorbed dose in red bone marrow is in reasonable agreement (0.63 mGy/MBq and 0.8 mGy/MBq for IDAC-Dose2.1 and OLINDA, respectively). A significant difference was found for the absorbed dose in the bone surface, which was almost twice as high for OLINDA (2.1 mGy/MBq for IDAC-Dose2.1 and 5.4 mGy/MBq for OLINDA). In some direct cases, the calculated absorbed dose in the urinary bladder wall with OLINDA is ten times higher compared to WinAct (which was utilized to calculate the total activity in the organs and tissues) and IDAC 2.1. These results are considered key to greater accuracy in internal dose calculation.


Assuntos
Lutécio/farmacocinética , Radioisótopos/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Dosagem Radioterapêutica , Samário/farmacocinética , Zircônio/farmacocinética , Feminino , Humanos , Masculino
20.
Mar Pollut Bull ; 171: 112658, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34271507

RESUMO

In this study, nearly 84 marine sediment samples were collected from twelve points in four cities (Quseir, Safaga, Hurghada, and Ras Gharib) along the Egyptian Red Sea sectors. The collected samples were extensively examined to estimate the natural radioactivity level. The obtained results were compared to the reported ranges from other locations in different countries. Hazardous radiation parameters such as radium equivalent, annual dose, and external hazards were estimated and compared to United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) recommended levels. The values were recorded in the first natural radioactivity database of coastal sediments from Egyptian Red Sea cities. The dose rate for certain organs was evaluated. The results showed that Red Sea beach sediments are safe in terms of natural radioactivity. It can be concluded that they do not pose a risk to tourists going to the beaches for recreation or to sailors and fishers involved in economic activities along the Egyptian Red Sea coast.


Assuntos
Monitoramento de Radiação , Radioatividade , Poluentes Radioativos do Solo , Egito , Sedimentos Geológicos , Oceano Índico , Radioisótopos de Potássio/análise , Poluentes Radioativos do Solo/análise , Espectrometria gama , Tório/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...