Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
2.
Cancer Lett ; 575: 216383, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37714256

RESUMO

Ovarian cancer (OCa) is the most lethal gynecologic cancer. Emerging data indicates that estrogen receptor beta (ERß) functions as a tumor suppressor in OCa. Lysine-specific histone demethylase 1A (KDM1A) is an epigenetic modifier that acts as a coregulator for steroid hormone receptors. However, it remain unknown if KDM1A interacts with ERß and regulates its expression/functions in OCa. Analysis of TCGA data sets indicated KDM1A and ERß expression showed an inverse relationship in OCa. Knockout (KO), knockdown (KD), or inhibition of KDM1A increased ERß isoform 1 expression in established and patient-derived OCa cells. Further, KDM1A interacts with and functions as a corepressor of ERß, and its inhibition enhances ERß target gene expression via alterations of histone methylation marks at their promoters. Importantly, KDM1A-KO or -KD enhanced the efficacy of ERß agonist LY500307, and the combination of KDM1A inhibitor (KDM1Ai) NCD38 with ERß agonist synergistically reduced the cell viability, colony formation, and invasion of OCa cells. RNA-seq and DIA mass spectrometry analyses showed that KDM1A-KO resulted in enhanced ERß signaling and that genes altered by KDM1A-KO and ERß agonist were related to apoptosis, cell cycle, and EMT. Moreover, combination treatment significantly reduced the tumor growth in OCa orthotopic, syngeneic, and patient-derived xenograft models and proliferation in patient-derived explant models. Our results demonstrate that KDM1A regulates ERß expression/functions, and its inhibition improves ERß mediated tumor suppression. Overall, our findings suggest that KDM1Ai and ERß agonist combination therapy is a promising strategy for OCa.


Assuntos
Receptor beta de Estrogênio , Neoplasias Ovarianas , Humanos , Feminino , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Linhagem Celular Tumoral , Genes Supressores de Tumor , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Estrogênios , Histona Desmetilases
3.
Mol Cancer Ther ; 22(11): 1248-1260, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37493258

RESUMO

Glioblastoma (GBM) is the most prevalent and aggressive type of adult brain tumors with low 5-year overall survival rates. Epidemiologic data suggest that estrogen may decrease brain tumor growth, and estrogen receptor beta (ERß) has been demonstrated to exert antitumor functions in GBM. The lack of potent, selective, and brain permeable ERß agonist to promote its antitumor action is limiting the therapeutic promise of ERß. In this study, we discovered that Indanone and tetralone-keto or hydroxyl oximes are a new class of ERß agonists. Because of its high activity in ERß reporter assays, specific binding to ERß in polar screen assays, and potent growth inhibitory activity in GBM cells, CIDD-0149897 was discovered as a possible hit by screening a library of compounds. CIDD-0149897 is more selective for ERß than ERα (40-fold). Treatment with CIDD-0149897 markedly reduced GBM cell viability with an IC50 of ∼7 to 15 µmol/L, while having little to no effect on ERß-KO cells and normal human astrocytes. Further, CIDD-0149897 treatment enhanced expression of known ERß target genes and promoted apoptosis in established and patient-derived GSC models. Pharmacokinetic studies confirmed that CIDD-0149897 has systemic exposure, and good bioavailability in the brain. Mice tolerated daily intraperitoneal treatment of CIDD-0149897 (50 mg/kg) with a 7-day repeat dosage with no toxicity. In addition, CIDD-0149897 treatment significantly decreased tumor growth in U251 xenograft model and extended the survival of orthotopic GBM tumor-bearing mice. Collectively, these findings pointed to CIDD-0149897 as a new class of ERß agonist, offering patients with GBM a potential means of improving survival.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Camundongos , Animais , Glioblastoma/patologia , Receptor beta de Estrogênio/genética , Linhagem Celular Tumoral , Encéfalo/metabolismo , Estrogênios , Neoplasias Encefálicas/patologia
4.
Biology (Basel) ; 12(4)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37106821

RESUMO

17ß-estradiol (E2) is produced in the brain as a neurosteroid, in addition to being an endocrine signal in the periphery. The current animal models for studying brain-derived E2 include global and conditional non-inducible knockout mouse models. The aim of this study was to develop a tamoxifen (TMX)-inducible astrocyte-specific aromatase knockout mouse line (GFAP-ARO-iKO mice) to specifically deplete the E2 synthesis enzymes and aromatase in astrocytes after their development in adult mice. The characterization of the GFAP-ARO-iKO mice revealed a specific and robust depletion in the aromatase expressions of their astrocytes and a significant decrease in their hippocampal E2 levels after a GCI. The GFAP-ARO-iKO animals were alive and fertile and had a normal general brain anatomy, with a normal astrocyte shape, intensity, and distribution. In the hippocampus, after a GCI, the GFAP-ARO-iKO animals showed a major deficiency in their reactive astrogliosis, a dramatically increased neuronal loss, and increased microglial activation. These findings indicate that astrocyte-derived E2 (ADE2) regulates the ischemic induction of reactive astrogliosis and microglial activation and is neuroprotective in the ischemic brain. The GFAP-ARO-iKO mouse models thus provide an important new model to help elucidate the roles and functions of ADE2 in the brain.

5.
Neuro Oncol ; 25(7): 1249-1261, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-36652263

RESUMO

BACKGROUND: Efficient DNA repair in response to standard chemo and radiation therapies often contributes to glioblastoma (GBM) therapy resistance. Understanding the mechanisms of therapy resistance and identifying the drugs that enhance the therapeutic efficacy of standard therapies may extend the survival of GBM patients. In this study, we investigated the role of KDM1A/LSD1 in DNA double-strand break (DSB) repair and a combination of KDM1A inhibitor and temozolomide (TMZ) in vitro and in vivo using patient-derived glioma stem cells (GSCs). METHODS: Brain bioavailability of the KDM1A inhibitor (NCD38) was established using LS-MS/MS. The effect of a combination of KDM1A knockdown or inhibition with TMZ was studied using cell viability and self-renewal assays. Mechanistic studies were conducted using CUT&Tag-seq, RNA-seq, RT-qPCR, western blot, homologous recombination (HR) and non-homologous end joining (NHEJ) reporter, immunofluorescence, and comet assays. Orthotopic murine models were used to study efficacy in vivo. RESULTS: TCGA analysis showed KDM1A is highly expressed in TMZ-treated GBM patients. Knockdown or knockout or inhibition of KDM1A enhanced TMZ efficacy in reducing the viability and self-renewal of GSCs. Pharmacokinetic studies established that NCD38 readily crosses the blood-brain barrier. CUT&Tag-seq studies showed that KDM1A is enriched at the promoters of DNA repair genes and RNA-seq studies confirmed that KDM1A inhibition reduced their expression. Knockdown or inhibition of KDM1A attenuated HR and NHEJ-mediated DNA repair capacity and enhanced TMZ-mediated DNA damage. A combination of KDM1A knockdown or inhibition and TMZ treatment significantly enhanced the survival of tumor-bearing mice. CONCLUSIONS: Our results provide evidence that KDM1A inhibition sensitizes GBM to TMZ via attenuation of DNA DSB repair pathways.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Animais , Camundongos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Lisina/genética , Lisina/farmacologia , Lisina/uso terapêutico , Quebras de DNA de Cadeia Dupla , Espectrometria de Massas em Tandem , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Reparo do DNA , DNA/farmacologia , DNA/uso terapêutico , Histona Desmetilases/genética , Histona Desmetilases/farmacologia , Histona Desmetilases/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Biology (Basel) ; 11(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36552208

RESUMO

Astrocytes and neurons in the male and female brains produce the neurosteroid brain-derived 17ß-estradiol (BDE2) from androgen precursors. In this review, we discuss evidence that suggest BDE2 has a role in a number of neurological conditions, such as focal and global cerebral ischemia, traumatic brain injury, excitotoxicity, epilepsy, Alzheimer's disease, and Parkinson's disease. Much of what we have learned about BDE2 in neurological disorders has come from use of aromatase inhibitors and global aromatase knockout mice. Recently, our group developed astrocyte- and neuron-specific aromatase knockout mice, which have helped to clarify the precise functions of astrocyte-derived 17ß-estradiol (ADE2) and neuron-derived 17ß-estradiol (NDE2) in the brain. The available evidence to date suggests a primarily beneficial role of BDE2 in facilitating neuroprotection, synaptic and cognitive preservation, regulation of reactive astrocyte and microglia activation, and anti-inflammatory effects. Most of these beneficial effects appear to be due to ADE2, which is induced in most neurological disorders, but there is also recent evidence that NDE2 exerts similar beneficial effects. Furthermore, in certain situations, BDE2 may also have deleterious effects, as recent evidence suggests its overproduction in epilepsy contributes to seizure induction. In this review, we examine the current state of this quickly developing topic, as well as possible future studies that may be required to provide continuing growth in the field.

7.
Cancers (Basel) ; 14(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36358818

RESUMO

Endometrial cancer (EC) is the fourth most common cancer in women, and half of the endometrioid EC (EEC) cases are attributable to obesity. However, the underlying mechanism(s) of obesity-driven EEC remain(s) unclear. In this study, we examined whether LIF signaling plays a role in the obesity-driven progression of EEC. RNA-seq analysis of EEC cells stimulated by adipose conditioned medium (ADP-CM) showed upregulation of LIF/LIFR-mediated signaling pathways including JAK/STAT and interleukin pathways. Immunohistochemistry analysis of normal and EEC tissues collected from obese patients revealed that LIF expression is upregulated in EEC tissues compared to the normal endometrium. Treatment of both primary and established EEC cells with ADP-CM increased the expression of LIF and its receptor LIFR and enhanced proliferation of EEC cells. Treatment of EEC cells with the LIFR inhibitor EC359 abolished ADP-CM induced colony formation andcell viability and decreased growth of EEC organoids. Mechanistic studies using Western blotting, RT-qPCR and reporter assays confirmed that ADP-CM activated LIF/LIFR downstream signaling, which can be effectively attenuated by the addition of EC359. In xenograft assays, co-implantation of adipocytes significantly enhanced EEC xenograft tumor growth. Further, treatment with EC359 significantly attenuated adipocyte-induced EEC progression in vivo. Collectively, our data support the premise that LIF/LIFR signaling plays an important role in obesity-driven EEC progression and the LIFR inhibitor EC359 has the potential to suppress adipocyte-driven tumor progression.

8.
Cancer Res ; 82(20): 3830-3844, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35950923

RESUMO

Most patients with estrogen receptor alpha-positive (ER+) breast cancers initially respond to treatment but eventually develop therapy resistance with disease progression. Overexpression of oncogenic ER coregulators, including proline, glutamic acid, and leucine-rich protein 1 (PELP1), are implicated in breast cancer progression. The lack of small molecules that inhibits PELP1 represents a major knowledge gap. Here, using a yeast-two-hybrid screen, we identified novel peptide inhibitors of PELP1 (PIP). Biochemical assays demonstrated that one of these peptides, PIP1, directly interacted with PELP1 to block PELP1 oncogenic functions. Computational modeling of PIP1 revealed key residues contributing to its activity and facilitated the development of a small-molecule inhibitor of PELP1, SMIP34, and further analyses confirmed that SMIP34 directly bound to PELP1. In breast cancer cells, SMIP34 reduced cell growth in a dose-dependent manner. SMIP34 inhibited proliferation of not only wild-type (WT) but also mutant (MT) ER+ and therapy-resistant breast cancer cells, in part by inducing PELP1 degradation via the proteasome pathway. RNA sequencing analyses showed that SMIP34 treatment altered the expression of genes associated with estrogen response, cell cycle, and apoptosis pathways. In cell line-derived and patient-derived xenografts of both WT and MT ER+ breast cancer models, SMIP34 reduced proliferation and significantly suppressed tumor progression. Collectively, these results demonstrate SMIP34 as a first-in-class inhibitor of oncogenic PELP1 signaling in advanced breast cancer. SIGNIFICANCE: Development of a novel inhibitor of oncogenic PELP1 provides potential therapeutic avenues for treating therapy-resistant, advanced ER+ breast cancer.


Assuntos
Neoplasias da Mama , Proteínas Correpressoras , Fatores de Transcrição , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proteínas Correpressoras/antagonistas & inibidores , Proteínas Correpressoras/metabolismo , Receptor alfa de Estrogênio/genética , Estrogênios , Feminino , Ácido Glutâmico , Humanos , Leucina , Prolina , Complexo de Endopeptidases do Proteassoma , Receptores de Estrogênio/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo
9.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806169

RESUMO

Ovarian cancer (OCa) is the deadliest gynecologic cancer. Emerging studies suggest ovarian cancer stem cells (OCSCs) contribute to chemotherapy resistance and tumor relapse. Recent studies demonstrated estrogen receptor beta (ERß) exerts tumor suppressor functions in OCa. However, the status of ERß expression in OCSCs and the therapeutic utility of the ERß agonist LY500307 for targeting OCSCs remain unknown. OCSCs were enriched from ES2, OV90, SKOV3, OVSAHO, and A2780 cells using ALDEFLUOR kit. RT-qPCR results showed ERß, particularly ERß isoform 1, is highly expressed in OCSCs and that ERß agonist LY500307 significantly reduced the viability of OCSCs. Treatment of OCSCs with LY500307 significantly reduced sphere formation, self-renewal, and invasion, while also promoting apoptosis and G2/M cell cycle arrest. Mechanistic studies using RNA-seq analysis demonstrated that LY500307 treatment resulted in modulation of pathways related to cell cycle and apoptosis. Western blot and RT-qPCR assays demonstrated the upregulation of apoptosis and cell cycle arrest genes such as FDXR, p21/CDKN1A, cleaved PARP, and caspase 3, and the downregulation of stemness markers SOX2, Oct4, and Nanog. Importantly, treatment of LY500307 significantly attenuated the tumor-initiating capacity of OCSCs in orthotopic OCa murine xenograft models. Our results demonstrate that ERß agonist LY500307 is highly efficacious in reducing the stemness and promoting apoptosis of OCSCs and shows significant promise as a novel therapeutic agent in treating OCa.


Assuntos
Receptor beta de Estrogênio , Neoplasias Ovarianas , Animais , Linhagem Celular Tumoral , Proliferação de Células , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Estrogênios/metabolismo , Feminino , Humanos , Camundongos , Células-Tronco Neoplásicas/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia
10.
Nat Cancer ; 3(7): 866-884, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35654861

RESUMO

Triple-negative breast cancer (TNBC) has a poor clinical outcome, due to a lack of actionable therapeutic targets. Herein we define lysosomal acid lipase A (LIPA) as a viable molecular target in TNBC and identify a stereospecific small molecule (ERX-41) that binds LIPA. ERX-41 induces endoplasmic reticulum (ER) stress resulting in cell death, and this effect is on target as evidenced by specific LIPA mutations providing resistance. Importantly, we demonstrate that ERX-41 activity is independent of LIPA lipase function but dependent on its ER localization. Mechanistically, ERX-41 binding of LIPA decreases expression of multiple ER-resident proteins involved in protein folding. This targeted vulnerability has a large therapeutic window, with no adverse effects either on normal mammary epithelial cells or in mice. Our study implicates a targeted strategy for solid tumors, including breast, brain, pancreatic and ovarian, whereby small, orally bioavailable molecules targeting LIPA block protein folding, induce ER stress and result in tumor cell death.


Assuntos
Estresse do Retículo Endoplasmático , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Lipase/química , Camundongos , Dobramento de Proteína , Neoplasias de Mama Triplo Negativas/genética
11.
Breast Cancer Res ; 24(1): 26, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395812

RESUMO

BACKGROUND: Methyltransferase SETDB1 is highly expressed in breast cancer (BC), however, the mechanisms by which SETDB1 promotes BC progression to endocrine therapy resistance remains elusive. In this study, we examined the mechanisms by which SETDB1 contribute to BC endocrine therapy resistance. METHODS: We utilized therapy sensitive (MCF7 and ZR75), therapy resistant (MCF7-TamR, MCF7-FR, MCF7-PELP1cyto, MCF7-SETDB1) estrogen receptor alpha positive (ER+)BC models and conducted in vitro cell viability, colony formation, 3-dimensional cell growth assays to investigate the role of SETDB1 in endocrine resistance. RNA-seq of parental and SETDB1 knock down ER+ BC cells was used to identify unique pathways. SETDB1 interaction with PELP1 was identified by yeast-two hybrid screen and confirmed by immunoprecipitation and GST-pull down assays. Mechanistic studies were conducted using Western blotting, reporter gene assays, RT-qPCR, and in vitro methylation assays. Xenograft assays were used to establish the role of PELP1 in SETDB1 mediated BC progression. RESULTS: RNA-seq analyses showed that SETDB1 regulates expression of a subset of estrogen receptor (ER) and Akt target genes that contribute to endocrine therapy resistance. Importantly, using yeast-two hybrid screen, we identified ER coregulator PELP1 as a novel interacting protein of SETDB1. Biochemical analyses confirmed SETDB1 and PELP1 interactions in multiple BC cells. Mechanistic studies confirmed that PELP1 is necessary for SETDB1 mediated Akt methylation and phosphorylation. Further, SETDB1 overexpression promotes tamoxifen resistance in BC cells, and PELP1 knockdown abolished these effects. Using xenograft model, we provided genetic evidence that PELP1 is essential for SETDB1 mediated BC progression in vivo. Analyses of TCGA datasets revealed SETDB1 expression is positively correlated with PELP1 expression in ER+ BC patients. CONCLUSIONS: This study suggests that the PELP1/SETDB1 axis play an important role in aberrant Akt activation and serves as a novel target for treating endocrine therapy resistance in breast cancer.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Proteínas Correpressoras/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/farmacologia , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Tamoxifeno/farmacologia , Fatores de Transcrição/genética
12.
Cancer Lett ; 524: 219-231, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34673129

RESUMO

Endometrial cancer (EC) often exhibit aberrant activation of PI3K/Akt/mTOR signaling and targeted therapies using mTOR inhibitors showed limited success. The epigenetic modifier, lysine-specific histone demethylase-1A (KDM1A/LSD1) is overexpressed in EC, however, the mechanistic and therapeutic implications of KDM1A in EC are poorly understood. Here, using 119 FDA-approved drugs screen, we identified that KDM1A inhibition is highly synergistic with mTOR inhibitors. Combination therapy of KDM1A and mTOR inhibitors potently reduced the cell viability, survival, and migration of EC cells. Mechanistic studies demonstrated that KDM1A inhibition attenuated the activation of mTOR signaling cascade and abolished rapamycin induced feedback activation of Akt. RNA-seq analysis identified that KDM1A inhibition downregulated the expression of genes involved in rapamycin induced activation of Akt, including the mTORC2 complex. Chromatin immunoprecipitation experiments confirmed KDM1A recruitment to the promoter regions of mTORC2 complex genes and that KDM1A inhibition promoted enrichment of repressive H3K9me2 marks at their promoters. Combination therapy of KDM1A inhibitor and rapamycin reduced the tumor growth in EC xenograft and patient derived xenograft models in vivo and patient derived tumor explants ex vivo. Importantly, in silico analysis of TCGA EC patients data sets revealed that KDM1A expression positively correlated with the levels of PI3K/Akt/mTOR genes. Collectively, our results provide compelling evidence that KDM1A inhibition potentiates the activity of mTOR inhibitors by attenuating the feedback activation of Akt survival signaling. Furthermore, the use of concurrent KDM1A and mTOR inhibitors may be an attractive targeted therapy for EC patients.


Assuntos
Neoplasias do Endométrio/tratamento farmacológico , Histona Desmetilases/genética , Inibidores de MTOR/farmacologia , Serina-Treonina Quinases TOR/genética , Animais , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histona Desmetilases/antagonistas & inibidores , Humanos , Inibidores de MTOR/química , Masculino , Camundongos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Neurosci Biobehav Rev ; 132: 793-817, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34823913

RESUMO

Although classically known as an endocrine signal produced by the ovary, 17ß-estradiol (E2) is also a neurosteroid produced in neurons and astrocytes in the brain of many different species. In this review, we provide a comprehensive overview of the localization, regulation, sex differences, and physiological/pathological roles of brain-derived E2 (BDE2). Much of what we know regarding the functional roles of BDE2 has come from studies using specific inhibitors of the E2 synthesis enzyme, aromatase, as well as the recent development of conditional forebrain neuron-specific and astrocyte-specific aromatase knockout mouse models. The evidence from these studies support a critical role for neuron-derived E2 (NDE2) in the regulation of synaptic plasticity, memory, socio-sexual behavior, sexual differentiation, reproduction, injury-induced reactive gliosis, and neuroprotection. Furthermore, we review evidence that astrocyte-derived E2 (ADE2) is induced following brain injury/ischemia, and plays a key role in reactive gliosis, neuroprotection, and cognitive preservation. Finally, we conclude by discussing the key controversies and challenges in this area, as well as potential future directions for the field.


Assuntos
Estrogênios , Plasticidade Neuronal , Animais , Astrócitos , Estradiol , Feminino , Masculino , Camundongos , Plasticidade Neuronal/fisiologia , Prosencéfalo
14.
Int J Mol Sci ; 22(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34948039

RESUMO

In addition to being a steroid hormone, 17ß-estradiol (E2) is also a neurosteroid produced in neurons in various regions of the brain of many species, including humans. Neuron-derived E2 (NDE2) is synthesized from androgen precursors via the action of the biosynthetic enzyme aromatase, which is located at synapses and in presynaptic terminals in neurons in both the male and female brain. In this review, we discuss evidence supporting a key role for NDE2 as a neuromodulator that regulates synaptic plasticity and memory. Evidence supporting an important neuromodulatory role of NDE2 in the brain has come from studies using aromatase inhibitors, aromatase overexpression in neurons, global aromatase knockout mice, and the recent development of conditional forebrain neuron-specific knockout mice. Collectively, these studies demonstrate a key role of NDE2 in the regulation of synapse and spine density, efficacy of excitatory synaptic transmission and long-term potentiation, and regulation of hippocampal-dependent recognition memory, spatial reference memory, and contextual fear memory. NDE2 is suggested to achieve these effects through estrogen receptor-mediated regulation of rapid kinase signaling and CREB-BDNF signaling pathways, which regulate actin remodeling, as well as transcription, translation, and transport of synaptic proteins critical for synaptic plasticity and function.


Assuntos
Estradiol/metabolismo , Neurônios/metabolismo , Memória Espacial/fisiologia , Sinapses/fisiologia , Animais , Aromatase/genética , Aromatase/metabolismo , Feminino , Humanos , Masculino , Plasticidade Neuronal , Transdução de Sinais
15.
Commun Biol ; 4(1): 1235, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34716410

RESUMO

Histone deacetylase inhibitors (HDACi) are identified as novel therapeutic agents, however, recent clinical studies suggested that they are marginally effective in treating triple negative breast cancer (TNBC). Here, we show that first-in-class Leukemia Inhibitory Factor Receptor (LIFRα) inhibitor EC359 could enhance the therapeutic efficacy of HDACi against TNBC. We observed that both targeted knockdown of LIFR with CRISPR or treatment with EC359 enhanced the potency of four different HDACi in reducing cell viability, cell survival, and enhanced apoptosis compared to monotherapy in TNBC cells. RNA-seq studies demonstrated oncogenic/survival signaling pathways activated by HDACi were attenuated by the EC359 + HDACi therapy. Importantly, combination therapy potently inhibited the growth of TNBC patient derived explants, cell derived xenografts and patient-derived xenografts in vivo. Collectively, our results suggest that targeted inhibition of LIFR can enhance the therapeutic efficacy of HDACi in TNBC.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Inibidores de Histona Desacetilases/administração & dosagem , Camundongos , Camundongos SCID
16.
Neurooncol Adv ; 3(1): vdab099, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485908

RESUMO

BACKGROUND: Glioblastomas (GBMs) are the most lethal primary brain tumors. Estrogen receptor ß (ESR2/ERß) function as a tumor suppressor in GBM, however, ERß expression is commonly suppressed during glioma progression. In this study, we examined whether drugs that reverse epigenetic modifications will enhance ERß expression and augment ERß agonist-mediated tumor suppression. METHODS: We tested the utility of epigenetic drugs which act as an inhibitor of histone deacetylases (HDACs), histone methylases, and BET enzymes. Mechanistic studies utilized RT-qPCR, chromatin immunoprecipitation (ChIP), and western blotting. Cell viability, apoptosis, colony formation, and invasion were measured using in vitro assays. An orthotopic GBM model was used to test the efficacy of in vivo. RESULTS: Of all inhibitors tested, HDACi (panobinostat and romidepsin) showed the potential to increase the expression of ERß in GBM cells. Treatment with HDACi uniquely upregulated ERß isoform 1 expression that functions as a tumor suppressor but not ERß isoform 5 that drives oncogenic functions. Further, combination therapy of HDACi with the ERß agonist, LY500307, potently reduced cell viability, invasion, colony formation, and enhanced apoptosis. Mechanistic studies showed that HDACi induced ERß is functional, as it enhanced ERß reporter activities and ERß target genes expression. ChIP analysis confirmed alterations in the histone acetylation at the ERß and its target gene promoters. In orthotopic GBM model, combination therapy of panobinostat and LY500307 enhanced survival of tumor-bearing mice. CONCLUSIONS: Our results suggest that the combination therapy of HDACi and LY500307 provides therapeutic utility in overcoming the suppression of ERß expression that commonly occurs in GBM progression.

17.
Cell Death Discov ; 7(1): 216, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400617

RESUMO

Endometrial cancer (EC) is the fourth most common cancer in women. Advanced-stage EC has limited treatment options with a poor prognosis. There is an unmet need for the identification of actionable drivers for the development of targeted therapies in EC. Leukemia inhibitory factor receptor (LIFR) and its ligand LIF play a major role in cancer progression, metastasis, stemness, and therapy resistance. However, little is known about the functional significance of the LIF/LIFR axis in EC progression. In this study using endometrial tumor tissue arrays, we identified that expression of LIF, LIFR is upregulated in EC. Knockout of LIFR using CRISPR/Cas9 in two different EC cells resulted in a significant reduction of their cell viability and cell survival. In vivo studies demonstrated that LIFR-KO significantly reduced EC xenograft tumor growth. Treatment of established and primary patient-derived EC cells with a novel LIFR inhibitor, EC359 resulted in the reduction of cell viability with an IC50 in the range of 20-100 nM and induction of apoptosis. Further, treatment with EC359 reduced the spheroid formation of EC cancer stem cells and reduced the levels of cancer stem cell markers SOX2, OCT4, NANOG, and Axin2. Mechanistic studies demonstrated that EC359 treatment attenuated the activation of LIF-LIFR driven pathways, including STAT3 and AKT/mTOR signaling in EC cells. Importantly, EC359 treatment resulted in a significant reduction of the growth of EC patient-derived explants ex vivo, EC cell line-derived xenografts, and patient-derived xenografts in vivo. Collectively, our work revealed the oncogenic potential of the LIF/LIFR axis in EC and support the utility of LIFR inhibitor, EC359, as a novel targeted therapy for EC via the inhibition of LIF/LIFR oncogenic signaling.

18.
Stem Cells ; 39(5): 536-550, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33470499

RESUMO

Glioblastoma (GBM) is the most common and deadliest tumor of the central nervous system. GBM has poor prognosis and glioma stem cells (GSCs) are implicated in tumor initiation and therapy resistance. Estrogen receptor ß (ERß) is expressed in GBM and exhibit tumor suppressive function. However, the role of ERß in GSCs and the therapeutic potential of ERß agonists on GSCs remain largely unknown. Here, we examined whether ERß modulates GSCs stemness and tested the utility of two ERß selective agonists (LY500307 and Liquiritigenin) to reduce the stemness of GSCs. The efficacy of ERß agonists was examined on GSCs isolated from established and patient derived GBMs. Our results suggested that knockout of ERß increased the proportion of CD133+ and SSEA+ positive GSCs and overexpression of ERß reduced the proportion of GSCs in GBM cells. Overexpression of ERß or treatment with ERß agonists significantly inhibited the GSCs cell viability, neurosphere formation, self-renewal ability, induced the apoptosis and reduced expression of stemness markers in GSCs. RNA sequencing analysis revealed that ERß agonist modulate pathways related to stemness, differentiation and apoptosis. Mechanistic studies showed that ERß overexpression or agonist treatment reduced glutamate receptor signaling pathway and induced apoptotic pathways. In orthotopic models, ERß overexpression or ERß agonists treatment significantly reduced the GSCs mediated tumor growth and improved the mice overall survival. Immunohistochemical studies demonstrated that ERß overexpression decreased SOX2 and GRM3 expression and increased expression of GFAP in tumors. These results suggest that ERß activation could be a promising therapeutic strategy to eradicate GSCs.


Assuntos
Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Receptor beta de Estrogênio/genética , Glioma/genética , Células-Tronco Neoplásicas/metabolismo , Antígeno AC133/genética , Animais , Apoptose/efeitos dos fármacos , Benzopiranos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Receptor beta de Estrogênio/agonistas , Flavanonas/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/genética , Glioma/tratamento farmacológico , Glioma/patologia , Humanos , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Receptores de Glutamato/genética , Fatores de Transcrição SOXB1/genética , Transdução de Sinais/efeitos dos fármacos , Antígenos Embrionários Estágio-Específicos/genética , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Breast Cancer Res Treat ; 185(2): 343-357, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33057995

RESUMO

PURPOSE: Cancer stem cells (CSCs) are highly tumorigenic, spared by chemotherapy, sustain tumor growth, and are implicated in tumor recurrence after conventional therapies in triple negative breast cancer (TNBC). Lysine-specific histone demethylase 1A (KDM1A) is highly expressed in several human malignancies and CSCs including TNBC. However, the precise mechanistic role of KDM1A in CSC functions and therapeutic utility of KDM1A inhibitor for treating TNBC is poorly understood. METHODS: The effect of KDM1A inhibition on cell viability, apoptosis, and invasion were examined by Cell Titer Glo, Caspase 3/7 Glo, and matrigel invasion assays, respectively. Stemness and self-renewal of CSCs were examined using mammosphere formation and extreme limiting dilution assays. Mechanistic studies were conducted using RNA-sequencing, RT-qPCR, Western blotting and reporter gene assays. Mouse xenograft and patient derived xenograft models were used for preclinical evaluation of KDM1A inhibitor. RESULTS: TCGA data sets indicated that KDM1A is highly expressed in TNBC. CSCs express high levels of KDM1A and inhibition of KDM1A reduced the CSCs enrichment in TNBC cells. KDM1A inhibition reduced cell viability, mammosphere formation, self-renewal and promoted apoptosis of CSCs. Mechanistic studies suggested that IL6-JAK-STAT3 and EMT pathways were downregulated in KDM1A knockdown and KDM1A inhibitor treated cells. Importantly, doxycycline inducible knockout of KDM1A reduced tumor progression in orthotopic xenograft models and KDM1A inhibitor NCD38 treatment significantly reduced tumor growth in patient derived xenograft (PDX) models. CONCLUSIONS: Our results establish that KDM1A inhibition mitigates CSCs functions via inhibition of STAT3 and EMT signaling, and KDM1A inhibitor NCD38 may represent a novel class of drug for treating TNBC.


Assuntos
Histona Desmetilases , Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Proliferação de Células , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Camundongos , Recidiva Local de Neoplasia , Células-Tronco Neoplásicas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Ensaios Antitumorais Modelo de Xenoenxerto
20.
J Neurosci ; 40(50): 9751-9771, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33158962

RESUMO

Expression of the 17ß-estradiol (E2) synthesis enzyme aromatase is highly upregulated in astrocytes following brain injury. However, the precise role of astrocyte-derived E2 in the injured brain remains unclear. In the current study, we generated a glial fibrillary acidic protein (GFAP) promoter-driven aromatase knock-out (GFAP-ARO-KO) mouse model to deplete astrocyte-derived E2 in the brain and determine its roles after global cerebral ischemia (GCI) in male and female mice. GFAP-ARO-KO mice were viable and fertile, with normal gross brain structure, normal morphology, intensity and distribution of astrocytes, normal aromatase expression in neurons, and normal cognitive function basally. In contrast, after GCI, GFAP-ARO-KO mice: (1) lacked the normal elevation of astrocyte aromatase and hippocampal E2 levels; (2) had significantly attenuated reactive astrogliosis; and (3) displayed enhanced neuronal damage, microglia activation, and cognitive deficits. RNA-sequencing (RNA-seq) analysis revealed that the ischemic GFAP-ARO-KO mouse hippocampus failed to upregulate the "A2" panel of reactive astrocyte genes. In addition, the JAK-STAT3 pathway, which is critical for the induction of reactive astrogliosis, was significantly downregulated in the GFAP-ARO-KO hippocampus following GCI. Finally, exogenous E2 administration fully rescued the compromised JAK-STAT3 pathway and reactive astrogliosis, and reversed the enhanced neuronal damage and microglial activation in the GFAP-ARO-KO mice after GCI, suggesting that the defects in the KO mice are because of a loss of E2 rather than an increase in precursor androgens. In conclusion, the current study provides novel genetic evidence for a beneficial role of astrocyte-derived E2 in reactive astrogliosis, microglial activation, and neuroprotection following an ischemic injury to the brain.SIGNIFICANCE STATEMENT Following cerebral ischemia, reactive astrocytes express the enzyme aromatase and produce 17ß-estradiol (E2), although the precise role of astrocyte-derived E2 is poorly understood. In this study, we generated a glial fibrillary acidic protein (GFAP) promoter-driven aromatase knock-out (GFAP-ARO-KO) mouse to deplete astrocyte-derived E2 and elucidate its roles after global cerebral ischemia (GCI). The GFAP-ARO-KO mice exhibited significantly attenuated reactive astrogliosis, as well as enhanced microglial activation, neuronal damage, and cognitive dysfunction after GCI. Transcriptome analysis further revealed that astrocyte-derived E2 was critical for the induction of the JAK-STAT3 signaling pathway, as well as the A2 reactive astrocyte phenotype after ischemia. Collectively, these findings indicate that astrocyte-derived E2 has a key role in the regulation of reactive astrogliosis, microglial activation, and neuroprotection after cerebral ischemia.


Assuntos
Aromatase/genética , Astrócitos/metabolismo , Isquemia Encefálica/metabolismo , Estradiol/metabolismo , Gliose/metabolismo , Hipocampo/metabolismo , Animais , Aromatase/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Condicionamento Clássico/fisiologia , Modelos Animais de Doenças , Estradiol/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/genética , Gliose/patologia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuroproteção/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...