Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Thromb Haemost ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38382738

RESUMO

BACKGROUND: Patients with cancer are at an increased risk of developing coagulation complications, and chemotherapy treatment increases the risk. Tumor progression is closely linked to the hemostatic system. Breast cancer tumors express coagulation factor V (FV), an essential factor in blood coagulation. The functional role of FV during treatment with chemotherapy is poorly understood and was explored in this study. OBJECTIVES: We aimed to investigate the role of FV in breast cancer progression by exploring associations with treatment response, gene regulation, and the functional effects of FV. METHODS: The receiver operating characteristic plotter was used to explore the predictive value of FV mRNA (F5) expression for treatment with FEC (5-fluorouracil, anthracycline, and cyclophosphamide). Breast cancer cohorts were analyzed to study treatment response to FEC. The effect of chemotherapy on F5 expression, the regulation of F5, and the functional effects of FV dependent and independent of chemotherapy were studied in breast cancer cell lines. RESULTS: F5 tumor expression was significantly higher in responders to FEC than in nonresponders. In vitro experiments revealed that anthracycline treatment increased the expression of F5. Inhibition and knockdown of p53 reduced the anthracycline-induced F5 expression. Mutation of a p53 half-site (c.158+1541/158+1564) in a luciferase plasmid reduced luciferase activity, suggesting that p53 plays a role in regulating F5. FV overexpression increased apoptosis and reduced proliferation slightly during anthracycline treatment. CONCLUSION: Our study identified F5 as a p53-regulated tumor suppressor candidate and a promising marker for response to chemotherapy. FV may have functional effects that are therapeutically relevant in breast cancer.

2.
J Thromb Haemost ; 22(5): 1319-1335, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38237862

RESUMO

BACKGROUND: The procoagulant phenotype in cancer is linked to thrombosis, cancer progression, and immune response. A novel treatment that reduces the risk of both thrombosis and cancer progression without excess bleeding risk remains to be identified. OBJECTIVES: Here, we aimed to broadly investigate the breast tumor coagulome and its relation to prognosis, treatment response to chemotherapy, and the tumor microenvironment. METHODS: Key coagulation-related genes (n = 35) were studied in a Norwegian cohort with tumor (n = 134) and normal (n = 189) tissue and in the Cancer Genome Atlas (n = 1052) data set. We performed gene set variation analysis in the Norwegian cohort, and in the Cancer Genome Atlas cohort, associations with the tumor microenvironment and prognosis were evaluated. Analyses were performed with cBioPortal, Estimation of Stromal and Immune cells in Malignant Tumors Using Expression Data, Tumor Immune Estimation Resource, the integrated repository portal for tumor-immune system interactions, Tumor Immune Single-cell Hub 2, and the receiver operating characteristic plotter. Six independent breast cancer cohorts were used to study the tumor coagulome and treatment response to chemotherapy. RESULTS: Twenty-two differentially expressed coagulation-related genes were identified in breast tumors. Several coagulome factors were correlated with tumor microenvironment characteristics and were expressed by nonmalignant cells in the tumor microenvironment. PLAT and F8 were independent predictors of better overall survival and progression-free survival, respectively. F12 and PLAU were predictors of worse progression-free survival. The PROCR-THBD-PLAT signature showed a promising predictive value (area under the curve, 0.75; 95% CI, 0.69-0.81; P = 3.6 × 10-17) for combination chemotherapy with fluorouracil, epirubicin, and cyclophosphamide. CONCLUSION: The breast tumor coagulome showed potential in prediction of prognosis and chemotherapy response. Cells within the tumor microenvironment are sources of coagulome factors and may serve as therapeutic targets of coagulation factors.


Assuntos
Coagulação Sanguínea , Neoplasias da Mama , Microambiente Tumoral , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Feminino , Coagulação Sanguínea/efeitos dos fármacos , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , Resultado do Tratamento , Noruega , Prognóstico , Regulação Neoplásica da Expressão Gênica , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Idoso , Fatores de Coagulação Sanguínea/genética , Adulto
3.
Sci Rep ; 13(1): 17714, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853083

RESUMO

Thymic T cell development comprises T cell receptor (TCR) recombination and assessment of TCR avidity towards self-peptide-MHC complexes presented by antigen-presenting cells. Self-reactivity may lead to negative selection, or to agonist selection and differentiation into unconventional lineages such as regulatory T cells and CD8[Formula: see text] T cells. To explore the effect of the adaptive immune receptor repertoire on thymocyte developmental decisions, we performed single cell adaptive immune receptor repertoire sequencing (scAIRR-seq) of thymocytes from human young paediatric thymi and blood. Thymic PDCD1+ cells, a putative CD8[Formula: see text] T cell precursor population, exhibited several TCR features previously associated with thymic and peripheral ZNF683+ CD8[Formula: see text] T cells, including enrichment of large and positively charged complementarity-determining region 3 (CDR3) amino acids. Thus, the TCR repertoire may partially explain the decision between conventional vs. agonist selected thymocyte differentiation, an aspect of importance for the development of therapies for patients with immune-mediated diseases.


Assuntos
Receptores de Antígenos de Linfócitos T , Timócitos , Humanos , Criança , Receptores de Antígenos de Linfócitos T/metabolismo , Timócitos/metabolismo , Timo/metabolismo , Linfócitos T Reguladores , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/metabolismo , Diferenciação Celular , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo
4.
Methods Mol Biol ; 2614: 349-356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36587134

RESUMO

Digital analysis of pathology whole-slide images has been recently gaining interest in the context of cancer diagnosis and treatment. In particular, deep learning methods have demonstrated significant potential in supporting pathology analysis, recently detecting molecular traits never before recognized in pathology H&E whole-slide images (WSIs). Alongside these advancements in the digital analysis of WSIs, it is becoming increasingly evident that both spatial and overall tumor heterogeneity may be significant determinants of cancer prognosis and treatment outcome. In this chapter, we describe methods that aim to support these two elements. We describe both an end-to-end deep learning pipeline for producing limited spatial transcriptomics from WSIs with associated bulk gene expression data, as well as an algorithm for quantifying spatial tumor heterogeneity based on the results of this pipeline.


Assuntos
Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Fenótipo , Algoritmos , Microscopia/métodos
5.
Nucleic Acids Res ; 50(18): 10449-10468, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36156150

RESUMO

Single-strand selective uracil-DNA glycosylase 1 (SMUG1) initiates base excision repair (BER) of uracil and oxidized pyrimidines. SMUG1 status has been associated with cancer risk and therapeutic response in breast carcinomas and other cancer types. However, SMUG1 is a multifunctional protein involved, not only, in BER but also in RNA quality control, and its function in cancer cells is unclear. Here we identify several novel SMUG1 interaction partners that functions in many biological processes relevant for cancer development and treatment response. Based on this, we hypothesized that the dominating function of SMUG1 in cancer might be ascribed to functions other than BER. We define a bad prognosis signature for SMUG1 by mapping out the SMUG1 interaction network and found that high expression of genes in the bad prognosis network correlated with lower survival probability in ER+ breast cancer. Interestingly, we identified hsa-let-7b-5p microRNA as an upstream regulator of the SMUG1 interactome. Expression of SMUG1 and hsa-let-7b-5p were negatively correlated in breast cancer and we found an inhibitory auto-regulatory loop between SMUG1 and hsa-let-7b-5p in the MCF7 breast cancer cells. We conclude that SMUG1 functions in a gene regulatory network that influence the survival and treatment response in several cancers.


Assuntos
Neoplasias da Mama , MicroRNAs , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Humanos , MicroRNAs/genética , Prognóstico , Uracila/metabolismo , Uracila-DNA Glicosidase/genética
6.
Commun Biol ; 5(1): 834, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982125

RESUMO

Long non-coding RNAs (lncRNAs) are involved in breast cancer pathogenesis through chromatin remodeling, transcriptional and post-transcriptional gene regulation. We report robust associations between lncRNA expression and breast cancer clinicopathological features in two population-based cohorts: SCAN-B and TCGA. Using co-expression analysis of lncRNAs with protein coding genes, we discovered three distinct clusters of lncRNAs. In silico cell type deconvolution coupled with single-cell RNA-seq analyses revealed that these three clusters were driven by cell type specific expression of lncRNAs. In one cluster lncRNAs were expressed by cancer cells and were mostly associated with the estrogen signaling pathways. In the two other clusters, lncRNAs were expressed either by immune cells or fibroblasts of the tumor microenvironment. To further investigate the cis-regulatory regions driving lncRNA expression in breast cancer, we identified subtype-specific transcription factor (TF) occupancy at lncRNA promoters. We also integrated lncRNA expression with DNA methylation data to identify long-range regulatory regions for lncRNA which were validated using ChiA-Pet-Pol2 loops. lncRNAs play an important role in shaping the gene regulatory landscape in breast cancer. We provide a detailed subtype and cell type-specific expression of lncRNA, which improves the understanding of underlying transcriptional regulation in breast cancer.


Assuntos
Neoplasias da Mama , RNA Longo não Codificante , Neoplasias da Mama/patologia , Metilação de DNA , Feminino , Regulação da Expressão Gênica , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Microambiente Tumoral
7.
Front Oncol ; 12: 868868, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35494005

RESUMO

Serglycin is a proteoglycan highly expressed by immune cells, in which its functions are linked to storage, secretion, transport, and protection of chemokines, proteases, histamine, growth factors, and other bioactive molecules. In recent years, it has been demonstrated that serglycin is also expressed by several other cell types, such as endothelial cells, muscle cells, and multiple types of cancer cells. Here, we show that serglycin expression is upregulated in transforming growth factor beta (TGF-ß) induced epithelial-mesenchymal transition (EMT). Functional studies provide evidence that serglycin plays an important role in the regulation of the transition between the epithelial and mesenchymal phenotypes, and it is a significant EMT marker gene. We further find that serglycin is more expressed by breast cancer cell lines with a mesenchymal phenotype as well as the basal-like subtype of breast cancers. By examining immune staining and single cell sequencing data of breast cancer tissue, we show that serglycin is highly expressed by infiltrating immune cells in breast tumor tissue.

8.
NAR Cancer ; 4(1): zcac008, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35350772

RESUMO

Aberrant DNA methylation is an early event in breast carcinogenesis and plays a critical role in regulating gene expression. Here, we perform genome-wide expression-methylation Quantitative Trait Loci (emQTL) analysis through the integration of DNA methylation and gene expression to identify disease-driving pathways under epigenetic control. By grouping the emQTLs using biclustering we identify associations representing important biological processes associated with breast cancer pathogenesis including regulation of proliferation and tumor-infiltrating fibroblasts. We report genome-wide loss of enhancer methylation at binding sites of proliferation-driving transcription factors including CEBP-ß, FOSL1, and FOSL2 with concomitant high expression of proliferation-related genes in aggressive breast tumors as we confirm with scRNA-seq. The identified emQTL-CpGs and genes were found connected through chromatin loops, indicating that proliferation in breast tumors is under epigenetic regulation by DNA methylation. Interestingly, the associations between enhancer methylation and proliferation-related gene expression were also observed within known subtypes of breast cancer, suggesting a common role of epigenetic regulation of proliferation. Taken together, we show that proliferation in breast cancer is linked to loss of methylation at specific enhancers and transcription factor binding and gene activation through chromatin looping.

9.
Front Immunol ; 13: 1092028, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36741401

RESUMO

To prevent autoimmunity, thymocytes expressing self-reactive T cell receptors (TCRs) are negatively selected, however, divergence into tolerogenic, agonist selected lineages represent an alternative fate. As thymocyte development, selection, and lineage choices are dependent on spatial context and cell-to-cell interactions, we have performed Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-seq) and spatial transcriptomics on paediatric human thymu​​s. Thymocytes expressing markers of strong TCR signalling diverged from the conventional developmental trajectory prior to CD4+ or CD8+ lineage commitment, while markers of different agonist selected T cell populations (CD8αα(I), CD8αα(II), T(agonist), Treg(diff), and Treg) exhibited variable timing of induction. Expression profiles of chemokines and co-stimulatory molecules, together with spatial localisation, supported that dendritic cells, B cells, and stromal cells contribute to agonist selection, with different subsets influencing thymocytes at specific developmental stages within distinct spatial niches. Understanding factors influencing agonist T cells is needed to benefit from their immunoregulatory effects in clinical use.


Assuntos
Subpopulações de Linfócitos T , Timócitos , Humanos , Criança , Timócitos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Autoimunidade
11.
Bioinformatics ; 37(21): 3796-3804, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34358288

RESUMO

MOTIVATION: Tumour heterogeneity is being increasingly recognized as an important characteristic of cancer and as a determinant of prognosis and treatment outcome. Emerging spatial transcriptomics data hold the potential to further our understanding of tumour heterogeneity and its implications. However, existing statistical tools are not sufficiently powerful to capture heterogeneity in the complex setting of spatial molecular biology. RESULTS: We provide a statistical solution, the HeTerogeneity Average index (HTA), specifically designed to handle the multivariate nature of spatial transcriptomics. We prove that HTA has an approximately normal distribution, therefore lending itself to efficient statistical assessment and inference. We first demonstrate that HTA accurately reflects the level of heterogeneity in simulated data. We then use HTA to analyze heterogeneity in two cancer spatial transcriptomics datasets: spatial RNA sequencing by 10x Genomics and spatial transcriptomics inferred from H&E. Finally, we demonstrate that HTA also applies to 3D spatial data using brain MRI. In spatial RNA sequencing, we use a known combination of molecular traits to assert that HTA aligns with the expected outcome for this combination. We also show that HTA captures immune-cell infiltration at multiple resolutions. In digital pathology, we show how HTA can be used in survival analysis and demonstrate that high levels of heterogeneity may be linked to poor survival. In brain MRI, we show that HTA differentiates between normal ageing, Alzheimer's disease and two tumours. HTA also extends beyond molecular biology and medical imaging, and can be applied to many domains, including GIS. AVAILABILITY AND IMPLEMENTATION: Python package and source code are available at: https://github.com/alonalj/hta. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Neoplasias , Transcriptoma , Humanos , Avaliação da Tecnologia Biomédica , Genômica , Neuroimagem
12.
Genome Med ; 13(1): 72, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33926515

RESUMO

BACKGROUND: Abnormal DNA methylation is observed as an early event in breast carcinogenesis. However, how such alterations arise is still poorly understood. microRNAs (miRNAs) regulate gene expression at the post-transcriptional level and play key roles in various biological processes. Here, we integrate miRNA expression and DNA methylation at CpGs to study how miRNAs may affect the breast cancer methylome and how DNA methylation may regulate miRNA expression. METHODS: miRNA expression and DNA methylation data from two breast cancer cohorts, Oslo2 (n = 297) and The Cancer Genome Atlas (n = 439), were integrated through a correlation approach that we term miRNA-methylation Quantitative Trait Loci (mimQTL) analysis. Hierarchical clustering was used to identify clusters of miRNAs and CpGs that were further characterized through analysis of mRNA/protein expression, clinicopathological features, in silico deconvolution, chromatin state and accessibility, transcription factor binding, and long-range interaction data. RESULTS: Clustering of the significant mimQTLs identified distinct groups of miRNAs and CpGs that reflect important biological processes associated with breast cancer pathogenesis. Notably, two major miRNA clusters were related to immune or fibroblast infiltration, hence identifying miRNAs associated with cells of the tumor microenvironment, while another large cluster was related to estrogen receptor (ER) signaling. Studying the chromatin landscape surrounding CpGs associated with the estrogen signaling cluster, we found that miRNAs from this cluster are likely to be regulated through DNA methylation of enhancers bound by FOXA1, GATA2, and ER-alpha. Further, at the hub of the estrogen cluster, we identified hsa-miR-29c-5p as negatively correlated with the mRNA and protein expression of DNA methyltransferase DNMT3A, a key enzyme regulating DNA methylation. We found deregulation of hsa-miR-29c-5p already present in pre-invasive breast lesions and postulate that hsa-miR-29c-5p may trigger early event abnormal DNA methylation in ER-positive breast cancer. CONCLUSIONS: We describe how miRNA expression and DNA methylation interact and associate with distinct breast cancer phenotypes.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica , Hormônios/farmacologia , MicroRNAs/genética , Cromatina/metabolismo , Ilhas de CpG/genética , DNA Metiltransferase 3A/metabolismo , Elementos Facilitadores Genéticos/genética , Feminino , Redes Reguladoras de Genes , Humanos , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Família Multigênica , Fenótipo , Locos de Características Quantitativas/genética
13.
PLoS One ; 16(1): e0245215, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33434192

RESUMO

MOTIVATION AND BACKGROUND: The patient's immune system plays an important role in cancer pathogenesis, prognosis and susceptibility to treatment. Recent work introduced an immune related breast cancer. This subtyping is based on the expression profiles of the tumor samples. Specifically, one study showed that analyzing 658 genes can lead to a signature for subtyping tumors. Furthermore, this classification is independent of other known molecular and clinical breast cancer subtyping. Finally, that study shows that the suggested subtyping has significant prognostic implications. RESULTS: In this work we develop an efficient signature associated with survival in breast cancer. We begin by developing a more efficient signature for the above-mentioned breast cancer immune-based subtyping. This signature represents better performance with a set of 579 genes that obtains an improved Area Under Curve (AUC). We then determine a set of 193 genes and an associated classification rule that yield subtypes with a much stronger statistically significant (log rank p-value < 2 × 10-4 in a test cohort) difference in survival. To obtain these improved results we develop a feature selection process that matches the high-dimensionality character of the data and the dual performance objectives, driven by survival and anchored by the literature subtyping.


Assuntos
Biomarcadores Tumorais/imunologia , Neoplasias da Mama , Regulação Neoplásica da Expressão Gênica/imunologia , Transcriptoma/imunologia , Neoplasias da Mama/classificação , Neoplasias da Mama/imunologia , Neoplasias da Mama/mortalidade , Intervalo Livre de Doença , Feminino , Humanos , Taxa de Sobrevida
14.
Sci Rep ; 10(1): 18802, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139755

RESUMO

Digital analysis of pathology whole-slide images is fast becoming a game changer in cancer diagnosis and treatment. Specifically, deep learning methods have shown great potential to support pathology analysis, with recent studies identifying molecular traits that were not previously recognized in pathology H&E whole-slide images. Simultaneous to these developments, it is becoming increasingly evident that tumor heterogeneity is an important determinant of cancer prognosis and susceptibility to treatment, and should therefore play a role in the evolving practices of matching treatment protocols to patients. State of the art diagnostic procedures, however, do not provide automated methods for characterizing and/or quantifying tumor heterogeneity, certainly not in a spatial context. Further, existing methods for analyzing pathology whole-slide images from bulk measurements require many training samples and complex pipelines. Our work addresses these two challenges. First, we train deep learning models to spatially resolve bulk mRNA and miRNA expression levels on pathology whole-slide images (WSIs). Our models reach up to 0.95 AUC on held-out test sets from two cancer cohorts using a simple training pipeline and a small number of training samples. Using the inferred gene expression levels, we further develop a method to spatially characterize tumor heterogeneity. Specifically, we produce tumor molecular cartographies and heterogeneity maps of WSIs and formulate a heterogeneity index (HTI) that quantifies the level of heterogeneity within these maps. Applying our methods to breast and lung cancer slides, we show a significant statistical link between heterogeneity and survival. Our methods potentially open a new and accessible approach to investigating tumor heterogeneity and other spatial molecular properties and their link to clinical characteristics, including treatment susceptibility and survival.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/genética , Heterogeneidade Genética , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/genética , Neoplasias da Mama/mortalidade , Aprendizado Profundo , Feminino , Expressão Gênica , Humanos , Neoplasias Pulmonares/mortalidade , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Taxa de Sobrevida
15.
Breast Cancer Res Treat ; 183(3): 585-598, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32710281

RESUMO

PURPOSE: The aim of this study was to assess protein tyrosine kinase profiles in primary breast cancer samples in correlation with the distinct hormone and growth receptor profiles ER, PR, and HER2. EXPERIMENTAL DESIGN: Pamchip® microarrays were used to measure the phosphorylation of 144 tyrosine kinase substrates in 29 ER+ breast cancer samples and cell lines MCF7, BT474 and ZR75-1. mRNA expression data from the METABRIC cohort and publicly available PR chip-sequencing data were used for validation purposes, together with RT-PCR. RESULTS: In ER+ breast tumors and cell lines, we observed that the loss of PR expression correlated to higher kinase activity in samples and cell lines that were HER2-. A number of kinases, representing mostly proteins within the PI3K/AKT pathway, were identified as responsible for the differential phosphorylation between PR- and PR+ in ER+/HER2- tumors. We used the METABRIC cohort to analyze mRNA expression from 977 ER+/HER2- breast cancers. Twenty four kinase-encoding genes were identified as differentially expressed between PR+ and PR-, dividing ER+/HER2- samples in two distinct clusters with significant differences in survival (p < 0.05). Four kinase genes, LCK, FRK, FGFR4, and MST1R, were identified as potential direct targets of PR. CONCLUSIONS: Our results suggest that the PR status has a profound effect on tyrosine kinases, especially for FGFR4 and LCK genes, in ER+/HER2- breast cancer patients. The influence of these genes on the PI3K/AKT signaling pathway may potentially lead to novel drug targets for ER+/PR- breast cancer patients.


Assuntos
Neoplasias da Mama , Receptores de Progesterona , Neoplasias da Mama/genética , Feminino , Humanos , Fosfatidilinositol 3-Quinases/genética , Receptor ErbB-2/genética , Receptores de Estrogênio/genética , Receptores de Progesterona/genética
16.
Int J Cancer ; 147(9): 2515-2525, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32488909

RESUMO

Antiangiogenic drugs are potentially a useful supplement to neoadjuvant chemotherapy for a subgroup of patients with human epidermal growth factor receptor 2 (HER2) negative breast cancer, but reliable biomarkers for improved response are lacking. Here, we report on a randomized phase II clinical trial to study the added effect of bevacizumab in neoadjuvant chemotherapy with FEC100 (5-fluorouracil, epirubicin and cyclophosphamide) and taxanes (n = 132 patients). Gene expression from the tumors was obtained before neoadjuvant treatment, and treatment response was evaluated by residual cancer burden (RCB) at time of surgery. Bevacizumab increased the proportion of complete responders (RCB class 0) from 5% to 20% among patients with estrogen receptor (ER) positive tumors (P = .02). Treatment with bevacizumab was associated with improved 8-year disease-free survival (P = .03) among the good responders (RCB class 0 or I). Patients treated with paclitaxel (n = 45) responded better than those treated with docetaxel (n = 21; P = .03). Improved treatment response was associated with higher proliferation rate and an immune phenotype characterized by high presence of classically activated M1 macrophages, activated NK cells and memory activated CD4 T cells. Treatment with bevacizumab increased the number of adverse events, including hemorrhage, hypertension, infection and febrile neutropenia, but despite this, the ECOG status was not affected.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Bevacizumab/farmacologia , Neoplasias da Mama/terapia , Terapia Neoadjuvante/métodos , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Bevacizumab/uso terapêutico , Mama/citologia , Mama/patologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Quimioterapia Adjuvante/métodos , Ciclofosfamida/farmacologia , Ciclofosfamida/uso terapêutico , Intervalo Livre de Doença , Epirubicina/farmacologia , Epirubicina/uso terapêutico , Feminino , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Seguimentos , Humanos , Células Matadoras Naturais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Macrófagos/imunologia , Mastectomia , Pessoa de Meia-Idade , Neoplasia Residual , Noruega/epidemiologia , Receptor ErbB-2/análise , Receptor ErbB-2/metabolismo , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
17.
Oncoimmunology ; 9(1): 1824644, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33457104

RESUMO

Background: Factor (F) V is an essential cofactor in blood coagulation, however, F5 expression in breast tumors has also been linked to tumor aggressiveness and overall survival. The specific role of FV in breast cancer is yet unknown. We therefore aimed at dissecting the biological relevance of FV in breast cancer. Methods: Gene expression data from a Scandinavian breast cancer cohort (n = 363) and the cancer genome atlas (TCGA) (n = 981) and 12 replication cohorts were used to search for F5 co-expressed genes, followed by gene ontology analysis. Pathological and bioinformatic tools were used to evaluate immune cell infiltration and tumor purity. T cell activation, proliferation and migration were studied in FV treated Jurkat T cells. Results: F5 co-expressed genes were mainly associated with immune system processes and cell activation. Tumors with high expression of F5 were more infiltrated with both lymphoid (T cells, NK cells, and B cells) and myeloid cells (macrophages and dendritic cells), and F5 expression was negatively correlated with tumor purity (ρ = -0.32). Confirming a prognostic role, data from the Kaplan-Meier plotter showed that high F5 expression was associated with improved relapse-free survival. The strongest association was observed in basal-like breast cancer (HR = 0.55; 95% CI, 0.42-0.71). Exogenous FV did not substantially affect activation, proliferation or migration of human T cells. Conclusions: F5 was identified as a novel marker of immune cell infiltration in breast cancer, and the prognostic role of F5 was verified. FV emerge as an interesting immunological biomarker with potential therapeutic relevance for the cancer-inflammation-thrombosis circuit.


Assuntos
Neoplasias da Mama , Fator V , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Feminino , Humanos , Recidiva Local de Neoplasia , Prognóstico
18.
Bioinformatics ; 36(4): 994-999, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31529022

RESUMO

MOTIVATION: Breast cancer consists of multiple distinct tumor subtypes, and results from epigenetic and genetic aberrations that give rise to distinct transcriptional profiles. Despite previous efforts to understand transcriptional deregulation through transcription factor networks, the transcriptional mechanisms leading to subtypes of the disease remain poorly understood. RESULTS: We used a sophisticated computational search of thousands of expression datasets to define extended signatures of distinct breast cancer subtypes. Using ENCODE ChIP-seq data of surrogate cell lines and motif analysis we observed that these subtypes are determined by a distinct repertoire of lineage-specific transcription factors. Furthermore, specific pattern and abundance of copy number and DNA methylation changes at these TFs and targets, compared to other genes and to normal cells were observed. Overall, distinct transcriptional profiles are linked to genetic and epigenetic alterations at lineage-specific transcriptional regulators in breast cancer subtypes. AVAILABILITY AND IMPLEMENTATION: The analysis code and data are deposited at https://bitbucket.org/qzhu/breast.cancer.tf/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Epigênese Genética , Neoplasias da Mama , Metilação de DNA , Epigenômica , Humanos , Fatores de Transcrição
19.
Int J Cancer ; 146(1): 223-235, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31444972

RESUMO

Angiogenesis is necessary for tumor growth and has been targeted in breast cancer; however, it is unclear which patients will respond and benefit from antiangiogenic therapy. We report noninvasive monitoring of patient response to neoadjuvant chemotherapy given alone or in combination with anti-vascular endothelial growth factor (bevacizumab) in a randomized clinical trial. At four time points during neoadjuvant chemotherapy ± bevacizumab of receptor tyrosine-protein kinase erbB-2-negative breast cancers, we measured metabolites and inflammation-related markers in patient's serum. We report significant changes in the levels of several molecules induced by bevacizumab, the most prominent being an increase in pentraxin 3 (PTX3) and von Willebrand factor (VWF). Serum levels of AXL, VWF and pulmonary and activation-regulated cytokine (PARC/CCL18) reflected response to chemotherapy alone or in combination with bevacizumab. We further analyzed serum cytokines in relation to tumor characteristics such as gene expression, tumor metabolites and tumor infiltrating leukocytes. We found that VWF and growth-differentiation factor 15 tumor mRNA levels correlated with their respective serum protein levels suggesting that these cytokines may be produced by tumors and outflow to the bloodstream while influencing the tumor microenvironment locally. Finally, we used binomial logistic regression which allowed to predict patient's response using only 10 noninvasive biomarkers. Our study highlights the potential of monitoring circulating levels of cytokines and metabolites during breast cancer therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Bevacizumab/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Quimioterapia Adjuvante , Mediadores da Inflamação/sangue , Bevacizumab/administração & dosagem , Biomarcadores/metabolismo , Neoplasias da Mama/sangue , Citocinas/sangue , Feminino , Humanos , Pessoa de Meia-Idade , Terapia Neoadjuvante
20.
Nat Commun ; 10(1): 5499, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796750

RESUMO

How mixtures of immune cells associate with cancer cell phenotype and affect pathogenesis is still unclear. In 15 breast cancer gene expression datasets, we invariably identify three clusters of patients with gradual levels of immune infiltration. The intermediate immune infiltration cluster (Cluster B) is associated with a worse prognosis independently of known clinicopathological features. Furthermore, immune clusters are associated with response to neoadjuvant chemotherapy. In silico dissection of the immune contexture of the clusters identified Cluster A as immune cold, Cluster C as immune hot while Cluster B has a pro-tumorigenic immune infiltration. Through phenotypical analysis, we find epithelial mesenchymal transition and proliferation associated with the immune clusters and mutually exclusive in breast cancers. Here, we describe immune clusters which improve the prognostic accuracy of immune contexture in breast cancer. Our discovery of a novel independent prognostic factor in breast cancer highlights a correlation between tumor phenotype and immune contexture.


Assuntos
Neoplasias da Mama/classificação , Neoplasias da Mama/imunologia , Microambiente Tumoral , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Proliferação de Células , Simulação por Computador , Transição Epitelial-Mesenquimal , Feminino , Genes Neoplásicos , Heterogeneidade Genética , Humanos , Modelos Logísticos , Terapia Neoadjuvante , Recidiva Local de Neoplasia/patologia , Fenótipo , Prognóstico , Modelos de Riscos Proporcionais , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...