Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(49): 26592-26610, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38047620

RESUMO

Fatty acids (FA) are the main constituents of lipids and oil crop waste, considered to be a promising 2G biomass that can be converted into ketenes via catalytic pyrolysis. Ketenes are appraised as promising synthons for the pharmaceutical, polymer, and chemical industries. Progress in the thermal conversion of short- and long-chain fatty acids into ketenes requires a deep understanding of their interaction mechanisms with the nanoscale oxide catalysts. In this work, the interactions of fatty acids with silica are investigated using a wide range of experimental and computational techniques (TPD MS, DFT, FTIR, in situ IR, equilibrium adsorption, and thermogravimetry). The adsorption isotherms of linear and branched fatty acids C1-C6 on the silica surface from aqueous solution have been obtained. The relative quantities of different types of surface complexes, as well as kinetic parameters of their decomposition, were calculated. The formation of surface complexes with a coordination bond between the carbonyl oxygens and silicon atoms in the surface-active center, which becomes pentacoordinate, was confirmed by DFT calculations, in good agreement with the IR feature at ∼1680 cm 1. Interestingly, ketenes release relate to these complexes' decomposition as confirmed by the thermal evolution of the absorption band (1680 cm-1) synchronously with the TPD peak of the ketene molecular ion. The established regularities of the ketenezation are also observed for the silica-induced pyrolysis of glyceryl trimyristate and real waste, rapeseed meals.

2.
RSC Adv ; 9(62): 35957-35968, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-35540596

RESUMO

The nature of active acid sites of zeolite H-BEA with different Si/Al ratios (15-407) in liquid phase etherification of isobutylene with ethanol in a continuous flow reactor in the temperature range 80-180 °C has been explored. We describe and discuss data concerning the strength and concentration of acid sites of H-BEA obtained by techniques of stepwise (quasi-equilibrium) thermal desorption of ammonia, X-ray diffraction, low-temperature adsorption of nitrogen, FTIR spectroscopy of adsorbed pyridine and solid-state 27Al MAS NMR. The average values of the adsorption energy of NH3 on H-BEA were experimentally determined as 63.7; 91.3 and 121.9 mmol g-1 (weak, medium, and strong, respectively). In agreement with this, a correlation between the rate of ethyl-tert-butyl ether synthesis and the concentration of weak acid sites (E NH3 = 61.6-68.9 kJ mol-1) has been observed. It was concluded that the active sites of H-BEA for this reaction are Brønsted hydroxyls representing internal silanol groups associated with octahedrally coordinated aluminum in the second coordination sphere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...