Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Hum Neurosci ; 16: 931818, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898934

RESUMO

Tumor Treating Fields (TTFields) is an FDA-approved cancer treatment technique used for glioblastoma multiforme (GBM). It consists in the application of alternating (100-500 kHz) and low-intensity (1-3 V/cm) electric fields (EFs) to interfere with the mitotic process of tumoral cells. In patients, these fields are applied via transducer arrays strategically positioned on the scalp using the NovoTAL™ system. It is recommended that the patient stays under the application of these fields for as long as possible. Inevitably, the temperature of the scalp increases because of the Joule effect, and it will remain above basal values for most part of the day. Furthermore, it is also known that the impedance of the head changes throughout treatment and that it might also play a role in the temperature variations. The goals of this work were to investigate how to realistically account for these increases and to quantify their impact in the choice of optimal arrays positions using a realistic head model with arrays positions obtained through NovoTAL™. We also studied the impedance variations based on the log files of patients who participated in the EF-14 clinical trial. Our computational results indicated that the layouts in which the arrays were very close to each other led to the appearance of a temperature hotspot that limited how much current could be injected which could consequently reduce treatment efficacy. Based on these data, we suggest that the arrays should be placed at least 1 cm apart from each other. The analysis of the impedance showed that the variations seen during treatment could be explained by three main factors: slow and long-term variations, array placement, and circadian rhythm. Our work indicates that both the temperature and impedance variations should be accounted for to improve the accuracy of computational results when investigating TTFields.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4192-4195, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892148

RESUMO

In this work we investigated the relation between the power density in the tumor and the maximum temperature reached in the scalp during TTFields treatment for glioblastoma. We used a realistic head model to perform the simulations in COMSOL Multiphysics and we solved Pennes' equation to obtain the temperature distribution. Our results indicate that there might be a linear relation between these two quantities and that TTFields are safe from a thermal point of view.


Assuntos
Neoplasias Encefálicas , Terapia por Estimulação Elétrica , Glioblastoma , Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Humanos , Couro Cabeludo , Temperatura
3.
Sci Rep ; 8(1): 15160, 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30310132

RESUMO

Spintronic devices often require the ability to locally change the magnetic configuration of ferromagnetic structures on a sub-micron scale. A promising route for achieving this goal is the use of heavy metal/ferromagnetic heterostructures where current flowing through the heavy metal layer generates field-like and anti-damping like torques on the magnetic layer. Commonly, such torques are used to switch magnets with a uniaxial anisotropy between two uniformly magnetized states. Here, we use such torques to switch magnetization in Ta/Ni0.80Fe0.20 heterostructures with uniaxial and biaxial anisotropy, where in the latter the magnetization is non-uniform. The anisotropies are induced by shape and the magnetic state is monitored using the planar Hall effect. As structures with several easy axes induced by shape can be part of a magnetic memory element, the results pave the way for multi-level magnetic memory with spin-orbit torque switching.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA