Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 34(9): 12847-12859, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32744779

RESUMO

Mechanical stimulations can prevent bone loss, but their effects on the tumor-invaded bone or solid tumors are elusive. Here, we evaluated the effect of knee loading, dynamic loads applied to the knee, on metastasized bone and mammary tumors. In a mouse model, tumor cells were inoculated to the mammary fat pad or the proximal tibia. Daily knee loading was then applied and metabolic changes were monitored mainly through urine. Urine samples were also collected from human subjects before and after step aerobics. The result showed that knee loading inhibited tumor progression in the loaded tibia. Notably, it also reduced remotely the growth of mammary tumors. In the urine, an altered level of cholesterol was observed with an increase in calcitriol, which is synthesized from a cholesterol derivative. In urinary proteins, knee loading in mice and step aerobics in humans markedly reduced WNT1-inducible signaling pathway protein 1, WISP1, which leads to poor survival among patients with breast cancer. In the ex vivo breast cancer tissue assay, WISP1 promoted the growth of cancer fragments and upregulated tumor-promoting genes, such as Runx2, MMP9, and Snail. Collectively, the present preclinical and human study demonstrated that mechanical stimulations, such as knee loading and step aerobics, altered urinary metabolism and downregulated WISP1. The study supports the benefit of mechanical stimulations for locally and remotely suppressing tumor progression. It also indicated the role of WISP1 downregulation as a potential mechanism of loading-driven tumor suppression.


Assuntos
Neoplasias Ósseas/terapia , Neoplasias da Mama/terapia , Proteínas de Sinalização Intercelular CCN/metabolismo , Terapia por Exercício , Neoplasias Mamárias Experimentais/terapia , Condicionamento Físico Animal , Proteínas Proto-Oncogênicas/metabolismo , Animais , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Proteínas de Sinalização Intercelular CCN/urina , Linhagem Celular Tumoral , Colesterol/urina , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas/urina
2.
J Proteome Res ; 19(5): 1913-1922, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32227867

RESUMO

Urinary volatile terpene (VT) levels are significantly altered with induced models of breast cancer in mice. The question arises whether VTs can detect the efficacy of antitumor treatments. BALB/c mice were injected with 4T1.2 murine tumor cells in the mammary pad or iliac artery to model localized breast cancer and induced bone metastasis. The effect of two dopaminergic antitumor agents was tested by conventional histology and altered VT levels. The headspace of urine specimens was analyzed by gas chromatography-mass spectrometry. In the localized model, the statistical significance (p < 0.05) was identified for 26% of VTs, and in the metastasis model, 19% of VTs. The authors discovered separate VT panels classifying localized/control [area under the curve (AUC) = 1.0] and metastasis/control (AUC = 0.98). Treatment samples were tested using these panels, which showed that mice treated with either agent were statistically significantly different from cancer samples, which is consistent with conventional analysis.


Assuntos
Neoplasias , Compostos Orgânicos Voláteis , Animais , Cromatografia Gasosa-Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Microextração em Fase Sólida , Terpenos , Compostos Orgânicos Voláteis/análise
3.
Bone Res ; 8: 9, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32128277

RESUMO

Osteocytes are mechanosensitive bone cells, but little is known about their effects on tumor cells in response to mechanical stimulation. We treated breast cancer cells with osteocyte-derived conditioned medium (CM) and fluid flow-treated conditioned medium (FFCM) with 0.25 Pa and 1 Pa shear stress. Notably, CM and FFCM at 0.25 Pa induced the mesenchymal-to-epithelial transition (MET), but FFCM at 1 Pa induced the epithelial-to-mesenchymal transition (EMT). This suggested that the effects of fluid flow on conditioned media depend on flow intensity. Fluorescence resonance energy transfer (FRET)-based evaluation of Src activity and vinculin molecular force showed that osteopontin was involved in EMT and MET switching. A mouse model of tumor-induced osteolysis was tested using dynamic tibia loadings of 1, 2, and 5 N. The low 1 N loading suppressed tumor-induced osteolysis, but this beneficial effect was lost and reversed with loads at 2 and 5 N, respectively. Changing the loading intensities in vivo also led to changes in serum TGFß levels and the composition of tumor-associated volatile organic compounds in the urine. Collectively, this study demonstrated the critical role of intensity-dependent mechanotransduction and osteopontin in tumor-osteocyte communication, indicating that a biophysical factor can tangibly alter the behaviors of tumor cells in the bone microenvironment.

4.
FASEB J ; 33(12): 13710-13721, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31585508

RESUMO

Bone is a frequent site of metastasis from breast cancer, and a desirable drug could suppress tumor growth as well as metastasis-linked bone loss. Currently, no drug is able to cure breast cancer-associated bone metastasis. In this study, we focused on statins that are known to inhibit cholesterol production and act as antitumor agents. After an initial potency screening of 7 U.S. Food and Drug Administration-approved statins, we examined pitavastatin as a drug candidate for inhibiting tumor and tumor-induced bone loss. In vitro analysis revealed that pitavastatin acted as an inhibitor of tumor progression by altering stress to the endoplasmic reticulum, down-regulating peroxisome proliferator-activated receptor γ, and reducing Snail and matrix metalloproteinase 9. In bone homeostasis, it blocked osteoclast development by suppressing transcription factors c-Fos and JunB, but stimulated osteoblast mineralization by regulating bone morphogenetic protein 2 and p53. In a mouse model, pitavastatin presented a dual role in tumor inhibition in the mammary fat pad, as well as in bone protection in the osteolytic tibia. In mass spectrometry-based analysis, volatile organic compounds (VOCs) that were linked to lipid metabolism and cholesterol synthesis were elevated in mice from the tumor-grown placebo group. Notably, pitavastatin-treated mice reduced specific VOCs that are linked to lipid metabolites in the mevalonate pathway. Collectively, the results lay a foundation for further investigation of pitavastatin's therapeutic efficacy in tumor-induced bone loss, as well as VOC-based diagnosis of tumor progression and treatment efficacy.-Wang, L., Wang, Y., Chen, A., Teli, M., Kondo, R., Jalali, A., Fan, Y., Liu, S., Zhao, X., Siegel, A., Minami, K., Agarwal, M., Li, B.-Y., Yokota, H. Pitavastatin slows tumor progression and alters urine-derived volatile organic compounds through the mevalonate pathway.


Assuntos
Ácido Mevalônico/metabolismo , Quinolinas/farmacologia , Compostos Orgânicos Voláteis/metabolismo , Animais , Neoplasias Ósseas/metabolismo , Neoplasias da Mama/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Regulação para Baixo/fisiologia , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Metabolismo dos Lipídeos/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Osteoblastos/metabolismo , Células RAW 264.7
5.
Sci Rep ; 9(1): 2526, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30792417

RESUMO

Breast cancer is the most common cancer detected in women and current screening methods for the disease are not sensitive. Volatile organic compounds (VOCs) include endogenous metabolites that provide information about health and disease which might be useful to develop a better screening method for breast cancer. The goal of this study was to classify mice with and without tumors and compare tumors localized to the mammary pad and tumor cells injected into the iliac artery by differences in VOCs in urine. After 4T1.2 tumor cells were injected into BALB/c mice either in the mammary pad or into the iliac artery, urine was collected, VOCs from urine headspace were concentrated by solid phase microextraction and results were analyzed by gas chromatography-mass spectrometry quadrupole time-of-flight. Multivariate and univariate statistical analyses were employed to find potential biomarkers for breast cancer and metastatic breast cancer in mice models. A set of six VOCs classified mice with and without tumors with an area under the receiver operator characteristic (ROC AUC) of 0.98 (95% confidence interval [0.85, 1.00]) via five-fold cross validation. Classification of mice with tumors in the mammary pad and iliac artery was executed utilizing a different set of six VOCs, with a ROC AUC of 0.96 (95% confidence interval [0.75, 1.00]).


Assuntos
Biomarcadores Tumorais/urina , Neoplasias da Mama/urina , Neoplasias Mamárias Animais/urina , Compostos Orgânicos Voláteis/urina , Animais , Neoplasias da Mama/patologia , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Limite de Detecção , Neoplasias Mamárias Animais/patologia , Programas de Rastreamento , Camundongos , Metástase Neoplásica , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...