Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Indian J Dermatol ; 67(1): 45-49, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35656234

RESUMO

Epidermolysis bullosa (EB) is a group of rare inherited conditions that results in blistering of the skin and mucous membranes. Mutations in the PLEC gene cause epidermolysis bullosa simplex (EBS). Mutations in type VII collagen, encoded by COL7A1 lead to epidermolysis bullosa dystrophica (EBD). The report presents three autosomal recessive cases, one with epidermolysis bullosa simplex (EBS) with nail and muscular dystrophy showing heterozygous single base pair deletion in exon 31 (chr8:144998220delC; c. 6288del; p. Arg2097AlafsTer55) and a heterozygous two base pair deletion in exon 27 (chr8:145001693_145001694delCT; c. 4054_4055del; p. Ser1352CysfsTer68) of PLEC gene. Two cases of epidermolysis bullosa dystrophica (EBD), with a novel homozygous, nonsense mutations in exon 54 (c. 5047C > T) and exon 104 (c. 7762C > T) of COL7A1 gene. The findings of the case report, provide evidence for additional molecular heterogeneity, in epidermolysis bullosa and also emphasize the significance of PLEC and COL7A1 gene mutations in epidermolysis bullosa.

3.
Birth Defects Res ; 109(13): 1020-1029, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28762673

RESUMO

BACKGROUND: Neural tube defects (NTDs) are caused by the failure of neural tube formation which occurs during early embryonic development. NTDs are the most severe and leading cause of fetal mortality. Serine hydroxymethyl transferase (SHMT1) provides one-carbon units necessary for embryogenesis and defects in one-carbon production result in specific pathological conditions during pregnancy. The present study is aimed to evaluate the association of SHMT1 C1420T with NTD risk in the fetus using fetal, maternal and paternal groups by applying both case-control and family-based triad approaches. METHODS: A total of 924 subjects including 124 NTD case-parent trios (n = 124 × 3 = 372) and 184 healthy control-parent trios (n = 184 × 3 = 552) from Telangana State, South India were analyzed. DNA from umbilical cord tissues and parental blood samples were extracted, and genotyped by polymerase chain reaction-restriction fragment length polymorphism. Statistical analysis used were SPSS, parent-of-origin effect (POE) analysis. RESULTS: Case-control study design demonstrated fetuses with homozygous variant genotype (TT) to be at risk toward spina bifida subtype (p = 0.022). Among parents, fathers with TT genotype were associated with anencephaly (p = 0.018) and spina bifida subtypes (p = 0.027) in the offspring. Of interest, maternal-paternal-offspring genotype incompatibility revealed maternal CT genotype in combination with paternal TT genotype increased risk for NTDs in the fetus (CTxTT = TT; p = 0.021). Family-based parent-of-origin effect linkage analysis revealed significant maternal over-transmission of variant allele to NTD fetuses (p < 0.01). CONCLUSION: The present study, using both case-control and family-based triad approach is the first report to demonstrate parental association of SHMT1 C1420T variant in conferring NTD risk in the fetus. Birth Defects Research 109:1020-1029, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Glicina Hidroximetiltransferase/genética , Defeitos do Tubo Neural/genética , Adulto , Estudos de Casos e Controles , Suscetibilidade a Doenças/complicações , Feminino , Predisposição Genética para Doença , Genótipo , Glicina Hidroximetiltransferase/metabolismo , Humanos , Índia , Masculino , Defeitos do Tubo Neural/enzimologia , Defeitos do Tubo Neural/fisiopatologia , Linhagem , Polimorfismo de Nucleotídeo Único , Gravidez
4.
Birth Defects Res ; 2017 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-28411382

RESUMO

BACKGROUND: Neural tube defects (NTDs) are caused by the failure of neural tube formation which occurs during early embryonic development. NTDs are the most severe and leading cause of fetal mortality. Serine hydroxymethyl transferase (SHMT1) provides one-carbon units necessary for embryogenesis and defects in one-carbon production result in specific pathological conditions during pregnancy. The present study is aimed to evaluate the association of SHMT1 C1420T with NTD risk in the fetus using fetal, maternal and paternal groups by applying both case-control and family-based triad approaches. METHODS: A total of 924 subjects including 124 NTD case-parent trios (n = 124 × 3 = 372) and 184 healthy control-parent trios (n = 184 × 3 = 552) from Telangana State, South India were analyzed. DNA from umbilical cord tissues and parental blood samples were extracted, and genotyped by polymerase chain reaction-restriction fragment length polymorphism. Statistical analysis used were SPSS, parent-of-origin effect (POE) analysis. RESULTS: Case-control study design demonstrated fetuses with homozygous variant genotype (TT) to be at risk toward spina bifida subtype (p = 0.022). Among parents, fathers with TT genotype were associated with anencephaly (p = 0.018) and spina bifida subtypes (p = 0.027) in the offspring. Of interest, maternal-paternal-offspring genotype incompatibility revealed maternal CT genotype in combination with paternal TT genotype increased risk for NTDs in the fetus (CTxTT = TT; p = 0.021). Family-based parent-of-origin effect linkage analysis revealed significant maternal over-transmission of variant allele to NTD fetuses (p < 0.01). CONCLUSION: The present study, using both case-control and family-based triad approach is the first report to demonstrate parental association of SHMT1 C1420T variant in conferring NTD risk in the fetus. Birth Defects Research, 2017. © 2017 Wiley Periodicals, Inc.

6.
J Reprod Infertil ; 11(3): 197-200, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23926490

RESUMO

INTRODUCTION: Robertsonian translocation is one of the major chromosomal rearrangements with a prevalence rate of 0.1% of the general population and 1% of the infertile population. In this report, we present a nonhomologous Robertsonian translocation in a female patient with a history of repeated abortions. CASE PRESENTATION: A couple with the complaint of repeated abortions was admitted in the Institute of Genetics and Hospital for Genetic Diseases in Begumpet, Hyderabad, India for cytogenetic evaluation. Chromosomal analysis of the couple revealed an abnormal karyotype in the female partner with 45, XX, rob (14, 15) (q10; q10) chromosomal constitution, while the male partner showed normal 46, XY karyotype. CONCLUSION: The cytogenetic analysis of couples with repeated abortions is mandatory to identify any probable chromosomal aberrations. Prenatal diagnosis should be offered to couples with repeated abortions in the case of future pregnancies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA