Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 98(6): 3428-33, 2001 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-11248095

RESUMO

Fabry disease is a lipid storage disorder resulting from mutations in the gene encoding the enzyme alpha-galactosidase A (alpha-gal A; EC ). We previously have demonstrated long-term alpha-gal A enzyme correction and lipid reduction mediated by therapeutic ex vivo transduction and transplantation of hematopoietic cells in a mouse model of Fabry disease. We now report marked improvement in the efficiency of this gene-therapy approach. For this study we used a novel bicistronic retroviral vector that engineers expression of both the therapeutic alpha-gal A gene and the human IL-2Ralpha chain (huCD25) gene as a selectable marker. Coexpression of huCD25 allowed selective immunoenrichment (preselection) of a variety of transduced human and murine cells, resulting in enhanced intracellular and secreted alpha-gal A enzyme activities. Of particular significance for clinical applicability, mobilized CD34(+) peripheral blood hematopoietic stem/progenitor cells from Fabry patients have low-background huCD25 expression and could be enriched effectively after ex vivo transduction, resulting in increased alpha-gal A activity. We evaluated effects of preselection in the mouse model of Fabry disease. Preselection of transduced Fabry mouse bone marrow cells elevated the level of multilineage gene-corrected hematopoietic cells in the circulation of transplanted animals and improved in vivo enzymatic activity levels in plasma and organs for more than 6 months after both primary and secondary transplantation. These studies demonstrate the potential of using a huCD25-based preselection strategy to enhance the clinical utility of ex vivo hematopoietic stem/progenitor cell gene therapy of Fabry disease and other disorders.


Assuntos
Doença de Fabry/terapia , Terapia Genética/métodos , Receptores de Interleucina-2/genética , alfa-Galactosidase/genética , Células 3T3 , Animais , Transplante de Medula Óssea , Modelos Animais de Doenças , Doença de Fabry/metabolismo , Doença de Fabry/patologia , Expressão Gênica , Vetores Genéticos , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Interleucina-2/metabolismo , Retroviridae/genética , alfa-Galactosidase/metabolismo
2.
Infect Immun ; 67(10): 5170-5, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10496892

RESUMO

Perinatally, and between menarche and menopause, increased levels of estrogen cause large amounts of glycogen to be deposited in the vaginal epithelium. During these times, the anaerobic metabolism of the glycogen, by the epithelial cells themselves and/or by vaginal flora, causes the vagina to become acidic (pH approximately 4). This study was designed to test whether the characteristics of acid production by vaginal flora in vitro can account for vaginal acidity. Eight vaginal Lactobacillus isolates from four species-L. gasseri, L. vaginalis, L. crispatus, and L. jensenii-acidified their growth medium to an asymptotic pH (3.2 to 4.8) that matches the range seen in the Lactobacillus-dominated human vagina (pH 3.6 to 4.5 in most women) (B. Andersch, L. Forssman, K. Lincoln, and P. Torstensson, Gynecol. Obstet. Investig. 21:19-25, 1986; L. Cohen, Br. J. Vener. Dis. 45:241-246, 1969; J. Paavonen, Scand. J. Infect. Dis. Suppl. 40:31-35, 1983; C. Tevi-Bénissan, L. Bélec, M. Lévy, V. Schneider-Fauveau, A. Si Mohamed, M.-C. Hallouin, M. Matta, and G. Grésenguet, Clin. Diagn. Lab. Immunol. 4:367-374, 1997). During exponential growth, all of these Lactobacillus species acidified their growth medium at rates on the order of 10(6) protons/bacterium/s. Such rates, combined with an estimate of the total number of lactobacilli in the vagina, suggest that vaginal lactobacilli could reacidify the vagina at the rate observed postcoitally following neutralization by the male ejaculate (W. H. Masters and V. E. Johnson, Human sexual response, p. 93, 1966). During bacterial vaginosis (BV), there is a loss of vaginal acidity, and the vaginal pH rises to >4.5. This correlates with a loss of lactobacilli and an overgrowth of diverse bacteria. Three BV-associated bacteria, Gardnerella vaginalis, Prevotella bivia, and Peptostreptococcus anaerobius, acidified their growth medium to an asymptotic pH (4.7 to 6.0) consistent with the characteristic elevated vaginal pH associated with BV. Together, these observations are consistent with vaginal flora, rather than epithelial cells, playing a primary role in creating the acidity of the vagina.


Assuntos
Bactérias/crescimento & desenvolvimento , Vagina/microbiologia , Bactérias/metabolismo , Meios de Cultura , Feminino , Humanos , Concentração de Íons de Hidrogênio , Lactobacillus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA