Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomol Detect Quantif ; 11: 21-30, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28331815

RESUMO

We measured the impact of the presence of total Escherichia coli (E. coli) cellular material on the performance of the Linear Regression of Efficiency (LRE) method of absolute quantitative PCR (LRE qPCR), which features the putatively universal CAL1 calibration reaction, which we propose as a synthetic biology standard. We firstly used a qPCR reaction in which a sequence present in the lone genomic BirA locus is amplified. Amplification efficiency for this reaction, a key metric for many quantitative qPCR methods, was inhibited by cellular material from bioreactor cultivation to a greater extent than material from shake flask cultivation. We then compared LRE qPCR to the Standard Curve method of absolute qPCR (SC qPCR). LRE qPCR method matched the performance of the SC qPCR when used to measure 417-4.17 × 107 copies of the BirA target sequence present in a shake flask-derived cell sonicates sample, and for 97-9.7 × 105 copies in the equivalent bioreactor-derived sample. A plasmid-encoded T7 bacteriophage sequence was next used to compare the methods. In the presence of cell sonicates from samples of up to OD600 = 160, LRE qPCR outperformed SC qPCR in the range of 1.54 × 108-1.54 × 1010 copies of the T7 target sequence and matched SC qPCR over 1.54 × 104-1.54 × 107 copies. These data suggest the CAL1 standard, combined with the LRE qPCR method, represents an attractive choice as a synthetic biology qPCR standard that performs well even when unpurified industrial samples are used as the source of template material.

2.
Springerplus ; 5(1): 1510, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27652083

RESUMO

BACKGROUND: Chinese Hamster Ovary (CHO) cells are the current industry standard for production of therapeutic monoclonal antibodies at commercial scales. Production optimisation in CHO cells hinges on analytical technologies such as the use of the polymerase chain reaction (PCR) to quantify genetic factors within the CHO genome and to detect the presence of contaminant organisms. PCR-based assays, whilst sensitive and accurate, are limited by (i) requiring lengthy sample preparation and (ii) a lack of standardisation. RESULTS: In this study we directly assess for the first time the effect of CHO cellular material on quantitative PCR (qPCR) and end-point PCR (e-pPCR) when used to measure and detect copies of a CHO genomic locus and a mycoplasma sequence. We also perform the first head-to-head comparison of the performance of a conventional qPCR method to that of the novel linear regression of efficiency (LRE) method when used to perform absolute qPCR on CHO-derived material. LRE qPCR features the putatively universal 'CAL1' standard. CONCLUSIONS: We find that sample preparation is required for accurate quantitation of a genomic target locus, but mycoplasma DNA sequences can be detected in the presence of high concentrations of CHO cellular material. The LRE qPCR method matches performance of a conventional qPCR approach and as such we invite the synthetic biology community to adopt CAL1 as a synthetic biology calibration standard for qPCR.

3.
J Microbiol Methods ; 127: 111-122, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27211507

RESUMO

Advances in synthetic genomics are now well underway in yeasts due to the low cost of synthetic DNA. These new capabilities also bring greater need for quantitating the presence, loss and rearrangement of loci within synthetic yeast genomes. Methods for achieving this will ideally; i) be robust to industrial settings, ii) adhere to a global standard and iii) be sufficiently rapid to enable at-line monitoring during cell growth. The methylotrophic yeast Pichia pastoris (P. pastoris) is increasingly used for industrial production of biotherapeutic proteins so we sought to answer the following questions for this particular yeast species. Is time-consuming DNA purification necessary to obtain accurate end-point polymerase chain reaction (e-pPCR) and quantitative PCR (qPCR) data? Can the novel linear regression of efficiency qPCR method (LRE qPCR), which has properties desirable in a synthetic biology standard, match the accuracy of conventional qPCR? Does cell cultivation scale influence PCR performance? To answer these questions we performed e-pPCR and qPCR in the presence and absence of cellular material disrupted by a mild 30s sonication procedure. The e-pPCR limit of detection (LOD) for a genomic target locus was 50pg (4.91×10(3) copies) of purified genomic DNA (gDNA) but the presence of cellular material reduced this sensitivity sixfold to 300pg gDNA (2.95×10(4) copies). LRE qPCR matched the accuracy of a conventional standard curve qPCR method. The presence of material from bioreactor cultivation of up to OD600=80 did not significantly compromise the accuracy of LRE qPCR. We conclude that a simple and rapid cell disruption step is sufficient to render P. pastoris samples of up to OD600=80 amenable to analysis using LRE qPCR which we propose as a synthetic biology standard.


Assuntos
Genoma Fúngico , Pichia/química , Pichia/genética , Reação em Cadeia da Polimerase/métodos , Biologia Sintética/métodos , Primers do DNA , Genômica , Modelos Lineares , Pichia/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...