Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(8): 104996, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37394010

RESUMO

A critical component of gene regulation is recognition of histones and their post-translational modifications by transcription-associated proteins or complexes. Although many histone-binding reader modules have been characterized, the bromo-adjacent homology (BAH) domain family of readers is still poorly characterized. A pre-eminent member of this family is PBRM1 (BAF180), a component of the PBAF chromatin-remodeling complex. PBRM1 contains two adjacent BAH domains of unknown histone-binding potential. We evaluated the tandem BAH domains for their capacity to associate with histones and to contribute to PBAF-mediated gene regulation. The BAH1 and BAH2 domains of human PBRM1 broadly interacted with histone tails, but they showed a preference for unmodified N-termini of histones H3 and H4. Molecular modeling and comparison of the BAH1 and BAH2 domains with other BAH readers pointed to a conserved binding mode via an extended open pocket and, in general, an aromatic cage for histone lysine binding. Point mutants that were predicted to disrupt the interaction between the BAH domains and histones reduced histone binding in vitro and resulted in dysregulation of genes targeted by PBAF in cellulo. Although the BAH domains in PBRM1 were important for PBAF-mediated gene regulation, we found that overall chromatin targeting of PBRM1 was not dependent on BAH-histone interaction. Our findings identify a function of the PBRM1 BAH domains in PBAF activity that is likely mediated by histone tail interaction.


Assuntos
Cromatina , Histonas , Humanos , Histonas/metabolismo , Cromatina/genética , Regulação da Expressão Gênica , Ligação Proteica
2.
J Virol ; 97(3): e0176322, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36995092

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi sarcoma (KS), the plasmablastic form of multicentric Castleman's disease, and primary effusion lymphoma. In sub-Saharan Africa, KS is the most common HIV-related malignancy and one of the most common childhood cancers. Immunosuppressed patients, including HIV-infected patients, are more prone to KSHV-associated disease. KSHV encodes a viral protein kinase (vPK) that is expressed from ORF36. KSHV vPK contributes to the optimal production of infectious viral progeny and upregulation of protein synthesis. To elucidate the interactions of vPK with cellular proteins in KSHV-infected cells, we used a bottom-up proteomics approach and identified host protein ubiquitin-specific peptidase 9X-linked (USP9X) as a potential interactor of vPK. Subsequently, we validated this interaction using a co-immunoprecipitation assay. We report that both the ubiquitin-like and the catalytic domains of USP9X are important for association with vPK. To uncover the biological relevance of the USP9X/vPK interaction, we investigated whether the knockdown of USP9X would modulate viral reactivation. Our data suggest that depletion of USP9X inhibits both viral reactivation and the production of infectious virions. Understanding how USP9X influences the reactivation of KSHV will provide insights into how cellular deubiquitinases regulate viral kinase activity and how viruses co-opt cellular deubiquitinases to propagate infection. Hence, characterizing the roles of USP9X and vPK during KSHV infection constitutes a first step toward identifying a potentially critical interaction that could be targeted by future therapeutics. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi sarcoma (KS), the plasmablastic form of multicentric Castleman's disease, and primary effusion lymphoma. In sub-Saharan Africa, KS is the most common HIV-related malignancy. KSHV encodes a viral protein kinase (vPK) that aids viral replication. To elucidate the interactions of vPK with cellular proteins in KSHV-infected cells, we used an affinity purification approach and identified host protein ubiquitin-specific peptidase 9X-linked (USP9X) as a potential interactor of vPK. Depletion of USP9X inhibits both viral reactivation and the production of infectious virions. Overall, our data suggest a proviral role for USP9X.


Assuntos
Herpesvirus Humano 8 , Sarcoma de Kaposi , Ubiquitina Tiolesterase , Criança , Humanos , Enzimas Desubiquitinantes , Herpesvirus Humano 8/fisiologia , Infecções por HIV/complicações , Linfoma de Efusão Primária , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/patologia , Sarcoma de Kaposi/virologia , Ubiquitina Tiolesterase/genética , Proteínas Virais/genética
3.
Elife ; 112022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35708309

RESUMO

Numerous receptor tyrosine kinases and immune receptors activate phospholipase C-γ (PLC-γ) isozymes at membranes to control diverse cellular processes including phagocytosis, migration, proliferation, and differentiation. The molecular details of this process are not well understood. Using hydrogen-deuterium exchange mass spectrometry, we show that PLC-γ1 is relatively inert to lipid vesicles that contain its substrate, phosphatidylinositol 4,5-bisphosphate (PIP2), unless first bound to the kinase domain of the fibroblast growth factor receptor (FGFR1). Exchange occurs throughout PLC-γ1 and is exaggerated in PLC-γ1 containing an oncogenic substitution (D1165H) that allosterically activates the lipase. These data support a model whereby initial complex formation shifts the conformational equilibrium of PLC-γ1 to favor activation. This receptor-induced priming of PLC-γ1 also explains the capacity of a kinase-inactive fragment of FGFR1 to modestly enhance the lipase activity of PLC-γ1 operating on lipid vesicles but not a soluble analog of PIP2 and highlights potential cooperativity between receptor engagement and membrane proximity. Priming is expected to be greatly enhanced for receptors embedded in membranes and nearly universal for the myriad of receptors and co-receptors that bind the PLC-γ isozymes.


Assuntos
Isoenzimas , Fosfolipases Tipo C , Regulação Alostérica , Ativação Enzimática , Isoenzimas/metabolismo , Lipase/metabolismo , Lipídeos , Fosfolipase C gama/metabolismo , Fosforilação , Fosfolipases Tipo C/metabolismo
4.
Genetics ; 221(2)2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35404465

RESUMO

Mono-methylation of histone H4 lysine 20 (H4K20me1) is catalyzed by Set8/KMT5A and regulates numerous aspects of genome organization and function. Loss-of-function mutations in Drosophila melanogaster Set8 or mammalian KMT5A prevent H4K20me1 and disrupt development. Set8/KMT5A also has non-histone substrates, making it difficult to determine which developmental functions of Set8/KMT5A are attributable to H4K20me1 and which to other substrates or to non-catalytic roles. Here, we show that human KMT5A can functionally substitute for Set8 during Drosophila development and that the catalytic SET domains of the two enzymes are fully interchangeable. We also uncovered a role in eye development for the N-terminal domain of Set8 that cannot be complemented by human KMT5A. Whereas Set820/20 null mutants are inviable, we found that an R634G mutation in Set8 predicted from in vitro experiments to ablate catalytic activity resulted in viable adults. Additionally, Set8(R634G) mutants retain significant, albeit reduced, H4K20me1, indicating that the R634G mutation does not eliminate catalytic activity in vivo and is functionally hypomorphic rather than null. Flies engineered to express only unmodifiable H4 histones (H4K20A) can also complete development, but are phenotypically distinct from H4K20R, Set820/20 null, and Set8R634G mutants. Taken together, our results demonstrate functional conservation of KMT5A and Set8 enzymes, as well as distinct roles for Set8 and H4K20me1 in Drosophila development.


Assuntos
Histonas , Lisina , Animais , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Lisina/genética , Mamíferos , Mutação , Fenótipo
5.
EMBO J ; 41(3): e108823, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34942047

RESUMO

Polyubiquitination by E2 and E3 enzymes is crucial to cell cycle control, epigenetic regulation, and development. The hallmark of the E2 family is the ubiquitin (Ub)-conjugating (UBC) domain that forms a dynamic thioester conjugate with ubiquitin (E2~Ub). Numerous studies have focused on E2 surfaces, such as the N-terminal and crossover helices, that directly interact with an E3 or the conjugated ubiquitin to stabilize the active, "closed" state of the E2~Ub. However, it remains unclear how other E2 surfaces regulate ubiquitin transfer. Here, we demonstrate the helix-turn-helix (HTH) motif of the UBC tunes the intrinsic polyubiquitination activity through distinct functions in different E2s. Interestingly, the E2HTH motif is repurposed in UBE2S and UBE2R2 to interact with the conjugated or acceptor ubiquitin, respectively, modulating ubiquitin transfer. Furthermore, we propose that Anaphase-Promoting Complex/Cyclosome binding to the UBE2SHTH reduces the conformational space of the flexible E2~Ub, demonstrating an atypical E3-dependent activation mechanism. Altogether, we postulate the E2HTH motif evolved to provide new functionalities that can be harnessed by E3s and permits additional regulation to facilitate specific E2-E3-mediated polyubiquitination.


Assuntos
Enzimas de Conjugação de Ubiquitina/química , Motivos de Aminoácidos , Domínio Catalítico , Humanos , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
6.
Mol Neurobiol ; 58(8): 3817-3834, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33856648

RESUMO

Dendritic spines of cortical pyramidal neurons are initially overproduced then remodeled substantially in the adolescent brain to achieve appropriate excitatory balance in mature circuits. Here we investigated the molecular mechanism of developmental spine pruning by Semaphorin 3F (Sema3F) and its holoreceptor complex, which consists of immunoglobulin-class adhesion molecule NrCAM, Neuropilin-2 (Npn2), and PlexinA3 (PlexA3) signaling subunits. Structure-function studies of the NrCAM-Npn2 interface showed that NrCAM stabilizes binding between Npn2 and PlexA3 necessary for Sema3F-induced spine pruning. Using a mouse neuronal culture system, we identified a dual signaling pathway for Sema3F-induced pruning, which involves activation of Tiam1-Rac1-PAK1-3 -LIMK1/2-Cofilin1 and RhoA-ROCK1/2-Myosin II in dendritic spines. Inhibitors of actin remodeling impaired spine collapse in the cortical neurons. Elucidation of these pathways expands our understanding of critical events that sculpt neuronal networks and may provide insight into how interruptions to these pathways could lead to spine dysgenesis in diseases such as autism, bipolar disorder, and schizophrenia.


Assuntos
Espinhas Dendríticas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Células Cultivadas , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo
7.
J Autoimmun ; 116: 102561, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33158670

RESUMO

Epitope spreading is an important mechanism for the development of autoantibodies (autoAbs) in autoimmune diseases. The study of epitope spreading in human autoimmune diseases is limited due to the major challenge of identifying the initial/primary target epitopes on autoantigens in autoimmune diseases. We have been studying the development of autoAbs in an endemic human autoimmune disease, Brazilian pemphigus foliaceus (or Fogo Selvagem (FS)). Our previous findings demonstrated that patients before (i.e. preclinical) and at the onset of FS have antibody (Ab) responses against other keratinocyte adhesion molecules in addition to the main target autoantigen of FS, desmoglein 1 (Dsg1), and anti-Dsg1 monoclonal Abs (mAbs) cross-reacted with an environmental antigen LJM11, a sand fly saliva protein. Since sand fly is prevalent in FS endemic regions, individuals in these regions could develop Abs against LJM11. The anti-LJM11 Abs could recognize different epitopes on LJM11, including an epitope that shares the structure similarity with an epitope on Dsg1 autoantigen. Thus, Ab response against this epitope on LJM11 could be the initial autoAb response detected in individuals in FS endemic regions, including those who eventually developed FS. Accordingly, this LJM11 and Dsg1 cross-reactive epitope on Dsg1 could be the primary target of the autoimmune response in FS. This investigation aimed to determine whether the autoAb responses against keratinocyte adhesion molecules are linked and originate from the immune response to LJM11. The anti-Dsg1 mAbs from preclinical FS and FS individuals were employed to determine their specificity or cross-reactivity to LJM11 and keratinocyte adhesion molecules. The cross-reactive epitopes on autoantigens were mapped. Our results indicate that all tested mAbs cross-reacted with LJM11 and keratinocyte adhesion molecules, and we identified an epitope on these keratinocyte adhesion molecules which is mimicked by LJM11. Thus, the cross-reactivity could be the mechanism by which the immune response against an environmental antigen triggers the initial autoAb responses. Epitope spreading leads to the pathogenic autoAb development and ensuing FS among genetically susceptible individuals.


Assuntos
Autoanticorpos/imunologia , Autoantígenos/imunologia , Desmogleína 1/imunologia , Epitopos/imunologia , Pênfigo/imunologia , Adulto , Sequência de Aminoácidos , Western Blotting , Caderinas/imunologia , Caderinas/metabolismo , Reações Cruzadas/imunologia , Desmogleína 1/genética , Desmogleína 1/metabolismo , Doenças Endêmicas , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina G/imunologia , Proteínas de Insetos/imunologia , Queratinócitos/imunologia , Queratinócitos/metabolismo , Masculino , Pênfigo/epidemiologia , Adulto Jovem
8.
J Invest Dermatol ; 140(12): 2332-2342.e10, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32360599

RESUMO

Fogo selvagem (FS) is a blistering skin disease caused by pathogenic IgG4 autoantibodies to desmoglein 1 (DSG1). Preclinical FS and leishmaniasis are endemic to certain regions of Brazil and exhibit nonpathogenic anti-DSG1 antibodies. Recurring bites from Lutzomyia longipalpis, the sand fly vector of leishmaniasis, immunize individuals with L. longipalpis salivary antigens LJM17 and LJM11. We measured the antibody responses to LJM17, LJM11, and DSG1 in normal settlers and patients with FS from an endemic focus of FS and nonendemic control populations. We also immunized mice with these antigens and assessed the IgG response. Healthy individuals and patients with FS from endemic areas had significantly higher values of IgG4 anti-LJM17 antibodies than nonendemic controls (P < 0.001 for both). The levels of IgG anti-DSG1 and IgG4 anti-LJM17 and anti-LJM11 antibodies correlated positively in normal settlers and patients with FS. Mice immunized with recombinant LJM17 produced IgG1 antibodies (human IgG4 homolog) that strongly cross-reacted with recombinant DSG1; these IgG1 antibodies were inhibited by LJM17, LJM11, and DSG1 in a dose-dependent manner. However, they did not bind human or mouse epidermis by indirect immunofluorescence. Lastly, we identified short-sequence homologies of surface-exposed residues within the human DSG1 ectodomain and LJM17. Inoculation by LJM17 from L. longipalpis-elicited DSG1-cross-reactive IgG4 antibodies may lead to FS in genetically predisposed individuals.


Assuntos
Mordeduras e Picadas/imunologia , Desmogleína 1/imunologia , Proteínas de Insetos/imunologia , Pênfigo/imunologia , Psychodidae/imunologia , Animais , Autoanticorpos/imunologia , Autoantígenos/imunologia , Mordeduras e Picadas/epidemiologia , Mordeduras e Picadas/patologia , Brasil/epidemiologia , Reações Cruzadas , Modelos Animais de Doenças , Doenças Endêmicas , Epiderme/imunologia , Epiderme/patologia , Humanos , Insetos Vetores/imunologia , Insetos Vetores/parasitologia , Leishmaniose Cutânea/epidemiologia , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Camundongos , Pênfigo/epidemiologia , Pênfigo/patologia , Psychodidae/parasitologia , Proteínas Recombinantes/imunologia , Proteínas e Peptídeos Salivares/imunologia
9.
J Thromb Haemost ; 18(3): 693-705, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31758832

RESUMO

BACKGROUND: The small GTPase Rap1 and its guanine nucleotide exchange factor, CalDAG-GEFI (CDGI), are critical for platelet function and hemostatic plug formation. CDGI function is regulated by a calcium binding EF hand regulatory domain and an atypical C1 domain with unknown function. OBJECTIVE: Here, we investigated whether the C1 domain controls CDGI subcellular localization, both in vitro and in vivo. METHODS: CDGI interaction with phosphoinositides was studied by lipid co-sedimentation assays and molecular dynamics simulations. Cellular localization of CDGI was studied in heterologous cells by immunofluorescence and subcellular fractionation assays. RESULTS: Lipid co-sedimentation studies demonstrated that the CDGI C1 domain associates with membranes through exclusive recognition of phosphoinositides, phosphatidylinositol (4,5)-biphosphate (PIP2) and phosphatidylinositol (3,4,5)-triphosphate (PIP3). Molecular dynamics simulations identified a phospholipid recognition motif consisting of residues exclusive to the CDGI C1 domain. Mutation of those residues abolished co-sedimentation of the C1 domain with lipid vesicles and impaired membrane localization of CDGI in heterologous cells. CONCLUSION: Our studies identify a novel interaction between an atypical C1 domain and phosphatidylinositol (4,5)-biphosphate and phosphatidylinositol (3,4,5)-triphosphate in cellular membranes, which is critical for Rap1 signaling in health and disease.


Assuntos
Ativadores de GTP Fosfo-Hidrolase , Fosfatidilinositóis , GTP Fosfo-Hidrolases , Fatores de Troca do Nucleotídeo Guanina , Transdução de Sinais
10.
J Autoimmun ; 89: 171-185, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29307589

RESUMO

Fogo Selvagem (FS), the endemic form of pemphigus foliaceus, is mediated by pathogenic IgG4 autoantibodies against the amino-terminal extracellular cadherin domain of the desmosomal cadherin desmoglein 1 (Dsg1). Here we define the detailed epitopes of these pathogenic antibodies. Proteolytic footprinting showed that IgG4 from 95% of FS donor sera (19/20) recognized a 16-residue peptide (A129LNSMGQDLERPLELR144) from the EC1 domain of Dsg1 that overlaps the binding site for an adhesive-partner desmosomal cadherin molecule. Mutation of Dsg1 residues M133 and Q135 reduced the binding of FS IgG4 autoantibodies to Dsg1 by ∼50%. Molecular modeling identified two nearby EC1 domain residues (Q82 and V83) likely to contribute to the epitope. Mutation of these residues completely abolished the binding of FS IgG4 to Dsg1. Bead aggregation assays showed that native binding interactions between Dsg1 and desmocollin 1 (Dsc1), which underlie desmosome structure, were abolished by Fab fragments of FS IgG4. These results further define the molecular mechanism by which FS IgG4 autoantibodies interfere with desmosome structure and lead to cell-cell detachment, the hallmark of this disease.


Assuntos
Autoanticorpos/metabolismo , Desmogleína 1/imunologia , Desmossomos/metabolismo , Epitopos de Linfócito B/imunologia , Imunoglobulina G/metabolismo , Pênfigo/imunologia , Peptídeos/imunologia , Animais , Autoanticorpos/imunologia , Brasil/epidemiologia , Células Cultivadas , Doenças Endêmicas , Mapeamento de Epitopos , Humanos , Imunização Passiva , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Mutagênese Sítio-Dirigida , Pênfigo/epidemiologia , Ligação Proteica , Conformação Proteica
11.
Amino Acids ; 50(1): 79-94, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29071531

RESUMO

Plant NADPH oxidases also known as respiratory burst oxidase homologs (Rbohs) are a family of membrane-bound enzymes that play diverse roles in the defense response and morphogenetic processes via regulated generation of reactive oxygen species. Rbohs are associated with a variety of functions, although the reason for this is not clear. To evaluate using bioinformatics, the possible mechanisms for the observed functional diversity within the plant kingdom, 127 Rboh protein sequences representing 26 plant species were analyzed. Multiple clusters were identified with gene duplications that were both dicot as well as monocot-specific. The N-terminal sequences were observed to be highly variable. The conserved cysteine (equivalent of Cys890) in C-terminal of AtRbohD suggested that the redox-based modification like S-nitrosylation may regulate the activity of other Rbohs. Three-dimensional models corresponding to the N-terminal domain for Rbohs from Arabidopsis thaliana and Oryza sativa were constructed and molecular dynamics studies were carried out to study the role of Ca2+ in the folding of Rboh proteins. Certain mutations indicated possibly affect the structure and function of the plant NADPH oxidases, thereby providing the rationale for further experimental validation.


Assuntos
NADPH Oxidases/química , NADPH Oxidases/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Motivos EF Hand , Evolução Molecular , Duplicação Gênica , Modelos Moleculares , NADP/metabolismo , NADPH Oxidases/classificação , NADPH Oxidases/genética , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Ligação Proteica , Domínios Proteicos , Proteínas rac1 de Ligação ao GTP/química , Proteínas rac1 de Ligação ao GTP/metabolismo
12.
Nat Commun ; 7: 12928, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27713402

RESUMO

Antibiotic-producing microbes evolved self-resistance mechanisms to avoid suicide. The biocontrol Agrobacterium radiobacter K84 secretes the Trojan Horse antibiotic agrocin 84 that is selectively transported into the plant pathogen A. tumefaciens and processed into the toxin TM84. We previously showed that TM84 employs a unique tRNA-dependent mechanism to inhibit leucyl-tRNA synthetase (LeuRS), while the TM84-producer prevents self-poisoning by expressing a resistant LeuRS AgnB2. We now identify a mechanism by which the antibiotic-producing microbe resists its own toxin. Using a combination of structural, biochemical and biophysical approaches, we show that AgnB2 evolved structural changes so as to resist the antibiotic by eliminating the tRNA-dependence of TM84 binding. Mutagenesis of key resistance determinants results in mutants adopting an antibiotic-sensitive phenotype. This study illuminates the evolution of resistance in self-immunity genes and provides mechanistic insights into a fascinating tRNA-dependent antibiotic with applications for the development of anti-infectives and the prevention of biocontrol emasculation.


Assuntos
Agrobacterium tumefaciens/genética , Farmacorresistência Bacteriana/genética , Evolução Molecular , Leucina-tRNA Ligase/antagonistas & inibidores , Leucina-tRNA Ligase/genética , Genes Bacterianos , Cinética , Leucina-tRNA Ligase/metabolismo , Controle Biológico de Vetores , Tumores de Planta/microbiologia , RNA de Transferência/metabolismo
13.
Proc Natl Acad Sci U S A ; 113(28): 7876-81, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27342859

RESUMO

Viruses depend upon the host cell for manufacturing components of progeny virions. To mitigate the inextricable dependence on host cell protein synthesis, viruses can modulate protein synthesis through a variety of mechanisms. We report that the viral protein kinase (vPK) encoded by open reading frame 36 (ORF36) of Kaposi's sarcoma-associated herpesvirus (KSHV) enhances protein synthesis by mimicking the function of the cellular protein S6 kinase (S6KB1). Similar to S6KB1, vPK phosphorylates the ribosomal S6 protein and up-regulates global protein synthesis. vPK also augments cellular proliferation and anchorage-independent growth. Furthermore, we report that both vPK and S6KB1 phosphorylate the enzyme 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 2 (PFKFB2) and that both kinases promote endothelial capillary tubule formation.


Assuntos
Herpesvirus Humano 8/enzimologia , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Virais/metabolismo , Simulação por Computador , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Modelos Moleculares , Proteínas Quinases S6 Ribossômicas 70-kDa/química , Especificidade por Substrato , Proteínas Virais/química
14.
Mol Hum Reprod ; 22(6): 410-26, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26921398

RESUMO

STUDY HYPOTHESIS: Detailed structural comparisons of sperm-specific glyceraldehyde 3-phosphate dehydrogenase, spermatogenic (GAPDHS) and the somatic glyceraldehyde 3-phosphate dehydrogenase (GAPDH) isozyme should facilitate the identification of selective GAPDHS inhibitors for contraceptive development. STUDY FINDING: This study identified a small-molecule GAPDHS inhibitor with micromolar potency and >10-fold selectivity that exerts the expected inhibitory effects on sperm glycolysis and motility. WHAT IS KNOWN ALREADY: Glycolytic ATP production is required for sperm motility and male fertility in many mammalian species. Selective inhibition of GAPDHS, one of the glycolytic isozymes with restricted expression during spermatogenesis, is a potential strategy for the development of a non-hormonal contraceptive that directly blocks sperm function. STUDY DESIGN, SAMPLES/MATERIALS, METHODS: Homology modeling and x-ray crystallography were used to identify structural features that are conserved in GAPDHS orthologs in mouse and human sperm, but distinct from the GAPDH orthologs present in somatic tissues. We identified three binding pockets surrounding the substrate and cofactor in these isozymes and conducted a virtual screen to identify small-molecule compounds predicted to bind more tightly to GAPDHS than to GAPDH. Following the production of recombinant human and mouse GAPDHS, candidate compounds were tested in dose-response enzyme assays to identify inhibitors that blocked the activity of GAPDHS more effectively than GAPDH. The effects of a selective inhibitor on the motility of mouse and human sperm were monitored by computer-assisted sperm analysis, and sperm lactate production was measured to assess inhibition of glycolysis in the target cell. MAIN RESULTS AND THE ROLE OF CHANCE: Our studies produced the first apoenzyme crystal structures for human and mouse GAPDHS and a 1.73 Å crystal structure for NAD(+)-bound human GAPDHS, facilitating the identification of unique structural features of this sperm isozyme. In dose-response assays T0501_7749 inhibited human GAPDHS with an IC50 of 1.2 µM compared with an IC50 of 38.5 µM for the somatic isozyme. This compound caused significant reductions in mouse sperm lactate production (P= 0.017 for 100 µM T0501_7749 versus control) and in the percentage of motile mouse and human sperm (P values from <0.05 to <0.0001, depending on incubation conditions). LIMITATIONS, REASONS FOR CAUTION: The chemical properties of T0501_7749, including limited solubility and nonspecific protein binding, are not optimal for drug development. WIDER IMPLICATIONS OF THE FINDINGS: This study provides proof-of-principle evidence that GAPDHS can be selectively inhibited, causing significant reductions in sperm glycolysis and motility. These results highlight the utility of structure-based drug design and support further exploration of GAPDHS, and perhaps other sperm-specific isozymes in the glycolytic pathway, as contraceptive targets. LARGE SCALE DATA: None. Coordinates and data files for three GAPDHS crystal structures were deposited in the RCSB Protein Data Bank (http://www.rcsb.org). STUDY FUNDING AND COMPETING INTERESTS: This work was supported by grants from the National Institutes of Health (NIH), USA, including U01 HD060481 and cooperative agreement U54 HD35041 as part of the Specialized Cooperative Centers Program in Reproduction and Infertility Research from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, and TW/HD00627 from the NIH Fogarty International Center. Additional support was provided by subproject CIG-05-109 from CICCR, a program of CONRAD, Eastern Virginia Medical School, USA. There are no conflicts of interest.


Assuntos
Inibidores Enzimáticos/farmacologia , Gliceraldeído-3-Fosfato Desidrogenases/antagonistas & inibidores , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Espermatozoides/efeitos dos fármacos , Espermatozoides/enzimologia , Trifosfato de Adenosina/metabolismo , Animais , Cristalografia por Raios X , Glicólise/efeitos dos fármacos , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Masculino , Camundongos , Motilidade dos Espermatozoides/efeitos dos fármacos
15.
Mol Biol Cell ; 26(8): 1559-74, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25694448

RESUMO

Nuclear bodies (NBs) are structures that concentrate proteins, RNAs, and ribonucleoproteins that perform functions essential to gene expression. How NBs assemble is not well understood. We studied the Drosophila histone locus body (HLB), a NB that concentrates factors required for histone mRNA biosynthesis at the replication-dependent histone gene locus. We coupled biochemical analysis with confocal imaging of both fixed and live tissues to demonstrate that the Drosophila Multi Sex Combs (Mxc) protein contains multiple domains necessary for HLB assembly. An important feature of this assembly process is the self-interaction of Mxc via two conserved N-terminal domains: a LisH domain and a novel self-interaction facilitator (SIF) domain immediately downstream of the LisH domain. Molecular modeling suggests that the LisH and SIF domains directly interact, and mutation of either the LisH or the SIF domain severely impairs Mxc function in vivo, resulting in reduced histone mRNA accumulation. A region of Mxc between amino acids 721 and 1481 is also necessary for HLB assembly independent of the LisH and SIF domains. Finally, the C-terminal 195 amino acids of Mxc are required for recruiting FLASH, an essential histone mRNA-processing factor, to the HLB. We conclude that multiple domains of the Mxc protein promote HLB assembly in order to concentrate factors required for histone mRNA biosynthesis.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Drosophila/química , Drosophila melanogaster/metabolismo , Histonas/genética , Transcrição Gênica/fisiologia , Proteínas Supressoras de Tumor/química , Sequência de Aminoácidos , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Feminino , Histonas/metabolismo , Microscopia Confocal , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
16.
Mol Pharmacol ; 85(4): 586-97, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24435554

RESUMO

The G12/13 class of heterotrimeric G proteins, comprising the α-subunits Gα12 and Gα13, regulates multiple aspects of cellular behavior, including proliferation and cytoskeletal rearrangements. Although guanine nucleotide exchange factors for the monomeric G protein Rho (RhoGEFs) are well characterized as effectors of this G protein class, a variety of other downstream targets has been reported. To identify Gα12 determinants that mediate specific protein interactions, we used a structural and evolutionary comparison between the G12/13, Gs, Gi, and Gq classes to identify "class-distinctive" residues in Gα12 and Gα13. Mutation of these residues in Gα12 to their deduced ancestral forms revealed a subset necessary for activation of serum response element (SRE)-mediated transcription, a G12/13-stimulated pathway implicated in cell proliferative signaling. Unexpectedly, this subset of Gα12 mutants showed impaired binding to heat-shock protein 90 (Hsp90) while retaining binding to RhoGEFs. Corresponding mutants of Gα13 exhibited robust SRE activation, suggesting a Gα12-specific mechanism, and inhibition of Hsp90 by geldanamycin or small interfering RNA-mediated lowering of Hsp90 levels resulted in greater downregulation of Gα12 than Gα13 signaling in SRE activation experiments. Furthermore, the Drosophila G12/13 homolog Concertina was unable to signal to SRE in mammalian cells, and Gα12:Concertina chimeras revealed Gα12-specific determinants of SRE activation within the switch regions and a C-terminal region. These findings identify Gα12 determinants of SRE activation, implicate Gα12:Hsp90 interaction in this signaling mechanism, and illuminate structural features that arose during evolution of Gα12 and Gα13 to allow bifurcated mechanisms of signaling to a common cell proliferative pathway.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Elemento de Resposta Sérica , Animais , Linhagem Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Mutação , Filogenia , Ligação Proteica , Transdução de Sinais , Ativação Transcricional , Proteínas rho de Ligação ao GTP/metabolismo
17.
Mol Biol Cell ; 25(5): 712-27, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24403601

RESUMO

Lipid droplet (LD) utilization is an important cellular activity that regulates energy balance and release of lipid second messengers. Because fatty acids exhibit both beneficial and toxic properties, their release from LDs must be controlled. Here we demonstrate that yeast Sfh3, an unusual Sec14-like phosphatidylinositol transfer protein, is an LD-associated protein that inhibits lipid mobilization from these particles. We further document a complex biochemical diversification of LDs during sporulation in which Sfh3 and select other LD proteins redistribute into discrete LD subpopulations. The data show that Sfh3 modulates the efficiency with which a neutral lipid hydrolase-rich LD subclass is consumed during biogenesis of specialized membrane envelopes that package replicated haploid meiotic genomes. These results present novel insights into the interface between phosphoinositide signaling and developmental regulation of LD metabolism and unveil meiosis-specific aspects of Sfh3 (and phosphoinositide) biology that are invisible to contemporary haploid-centric cell biological, proteomic, and functional genomics approaches.


Assuntos
Metabolismo dos Lipídeos , Proteínas de Transferência de Fosfolipídeos/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Homeostase , Membranas Intracelulares/metabolismo , Modelos Moleculares , Fosfolipases/metabolismo , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/metabolismo , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Esporos Fúngicos/metabolismo
18.
Nat Commun ; 4: 1417, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23361008

RESUMO

Leucyl-tRNA synthetases (LeuRSs) have an essential role in translation and are promising targets for antibiotic development. Agrocin 84 is a LeuRS inhibitor produced by the biocontrol agent Agrobacterium radiobacter K84 that targets pathogenic strains of A. tumefaciens, the causative agent of plant tumours. Agrocin 84 acts as a molecular Trojan horse and is processed inside the pathogen into a toxic moiety (TM84). Here we show using crystal structure, thermodynamic and kinetic analyses, that this natural antibiotic employs a unique and previously undescribed mechanism to inhibit LeuRS. TM84 requires tRNA(Leu) for tight binding to the LeuRS synthetic active site, unlike any previously reported inhibitors. TM84 traps the enzyme-tRNA complex in a novel 'aminoacylation-like' conformation, forming novel interactions with the KMSKS loop and the tRNA 3'-end. Our findings reveal an intriguing tRNA-dependent inhibition mechanism that may confer a distinct evolutionary advantage in vivo and inform future rational antibiotic design.


Assuntos
Nucleotídeos de Adenina/farmacologia , Agrobacterium tumefaciens/enzimologia , Agentes de Controle Biológico , Leucina-tRNA Ligase/antagonistas & inibidores , Tumores de Planta/microbiologia , RNA de Plantas/metabolismo , RNA de Transferência/metabolismo , Nucleotídeos de Adenina/química , Agrobacterium tumefaciens/efeitos dos fármacos , Aminoacilação/efeitos dos fármacos , Calorimetria , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Leucina-tRNA Ligase/química , Leucina-tRNA Ligase/metabolismo , Modelos Moleculares , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Estrutura Terciária de Proteína , RNA de Plantas/química , RNA de Transferência/química
19.
PLoS Pathog ; 8(11): e1003040, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23166501

RESUMO

Heterotrimeric G-protein signaling pathways are vital components of physiology, and many are amenable to pharmacologic manipulation. Here, we identify functional heterotrimeric G-protein subunits in Entamoeba histolytica, the causative agent of amoebic colitis. The E. histolytica Gα subunit EhGα1 exhibits conventional nucleotide cycling properties and is seen to interact with EhGßγ dimers and a candidate effector, EhRGS-RhoGEF, in typical, nucleotide-state-selective fashions. In contrast, a crystal structure of EhGα1 highlights unique features and classification outside of conventional mammalian Gα subfamilies. E. histolytica trophozoites overexpressing wildtype EhGα1 in an inducible manner exhibit an enhanced ability to kill host cells that may be wholly or partially due to enhanced host cell attachment. EhGα1-overexpressing trophozoites also display enhanced transmigration across a Matrigel barrier, an effect that may result from altered baseline migration. Inducible expression of a dominant negative EhGα1 variant engenders the converse phenotypes. Transcriptomic studies reveal that modulation of pathogenesis-related trophozoite behaviors by perturbed heterotrimeric G-protein expression includes transcriptional regulation of virulence factors and altered trafficking of cysteine proteases. Collectively, our studies suggest that E. histolytica possesses a divergent heterotrimeric G-protein signaling axis that modulates key aspects of cellular processes related to the pathogenesis of this infectious organism.


Assuntos
Entamoeba histolytica/imunologia , Entamebíase/imunologia , Subunidades alfa de Proteínas de Ligação ao GTP/imunologia , Proteínas de Protozoários/imunologia , Fatores de Virulência/imunologia , Animais , Células CHO , Cricetinae , Cricetulus , Cristalografia por Raios X , Entamoeba histolytica/enzimologia , Entamoeba histolytica/genética , Entamebíase/enzimologia , Entamebíase/genética , Subunidades alfa de Proteínas de Ligação ao GTP/química , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica/imunologia , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/imunologia , Humanos , Células Jurkat , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Fatores de Troca de Nucleotídeo Guanina Rho , Transcrição Gênica/imunologia , Fatores de Virulência/biossíntese , Fatores de Virulência/química
20.
PLoS One ; 7(8): e42633, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22880057

RESUMO

Plants recognize microbes via specific pattern recognition receptors that are activated by microbe-associated molecular patterns (MAMPs), resulting in MAMP-triggered immunity (MTI). Successful pathogens bypass MTI in genetically diverse hosts via deployment of effectors (virulence factors) that inhibit MTI responses, leading to pathogen proliferation. Plant pathogenic bacteria like Pseudomonas syringae utilize a type III secretion system to deliver effectors into cells. These effectors can contribute to pathogen virulence or elicit disease resistance, depending upon the host plant genotype. In disease resistant genotypes, intracellular immune receptors, typically belonging to the nucleotide binding leucine-rich repeat family of proteins, perceive bacterial effector(s) and initiate downstream defense responses (effector triggered immunity) that include the hypersensitive response, and transcriptional re-programming leading to various cellular outputs that collectively halt pathogen growth. Nucleotide binding leucine-rich repeat sensors can be indirectly activated via perturbation of a host protein acting as an effector target. AvrRpm1 is a P. syringae type III effector. Upon secretion into the host cell, AvrRpm1 is acylated by host enzymes and directed to the plasma membrane, where it contributes to virulence. This is correlated with phosphorylation of Arabidopsis RIN4 in vivo. RIN4 is a negative regulator of MAMP-triggered immunity, and its modification in the presence of four diverse type III effectors, including AvrRpm1, likely enhances this RIN4 regulatory function. The RPM1 nucleotide binding leucine-rich repeat sensor perceives RIN4 perturbation in disease resistant plants, leading to a successful immune response. Here, demonstrate that AvrRpm1 has a fold homologous to the catalytic domain of poly(ADP-ribosyl) polymerase. Site-directed mutagenesis of each residue in the putative catalytic triad, His63-Tyr122-Asp185 of AvrRpm1, results in loss of both AvrRpm1-dependent virulence and AvrRpm1-mediated activation of RPM1, but, surprisingly, causes a gain of function: the ability to activate the RPS2 nucleotide binding leucine-rich repeat sensor.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Bactérias/genética , Mutação de Sentido Incorreto/genética , Imunidade Vegetal/imunologia , ADP Ribose Transferases/metabolismo , Sequência de Aminoácidos , Aminoácidos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biocatálise , Proteínas de Transporte/metabolismo , Sequência Conservada , Peptídeos e Proteínas de Sinalização Intracelular , Dados de Sequência Molecular , Poli(ADP-Ribose) Polimerases/química , Pseudomonas syringae/patogenicidade , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...