Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 590: 216845, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38589004

RESUMO

Pancreatic adenocarcinoma (PDAC) is highly resistant to conventional chemotherapeutic interventions, resulting in exceptionally low survival rates. The limited efficacy can in part be attributed to dose limitations and treatment cessation urged by toxicity of currently used chemotherapy. The advent of targeted delivery strategies has kindled hope for circumventing off-target toxicity. We have previously reported a PDAC-specific mesoporous silica nanoparticle (MSN) containing a protease linker responsive to ADAM9, a PDAC-enriched extracellularly deposited protease. Upon loading with paclitaxel these ADAM9-MSNs reduced side effects both in vitro and in vivo, however, disappointing antitumor efficacy was observed in vivo. Here, we propose that an efficient uptake of MSNs by tumor cells might underlie the lack of antitumor efficacy of MSNs functionalized with linker responsive to extracellular proteases. Harnessing this premise to improve antitumor efficacy, we performed an in silico analysis to identify PDAC-enriched intracellular proteases. We report the identification of BACE2, CAPN2 and DPP3 as PDAC enriched intracellular proteases, and report the synthesis of BACE2-, CAPN2- and DPP3-responsive MSNs. Extensive preclinical assessments revealed that paclitaxel-loaded CAPN2- and DPP3-MSNs exhibit high PDAC specificity in vitro as opposed to free paclitaxel. The administration of paclitaxel-loaded CAPN2- and DPP3-MSNs in vivo confirmed the reduction of leukopenia and induced no organ damage. Promisingly, in two mouse models CAPN2-MSNs reduced tumor growth at least as efficiently as free paclitaxel. Taken together, our results pose CAPN2-MSNs as a promising nanocarrier for the targeted delivery of chemotherapeutics in PDAC.


Assuntos
Calpaína , Portadores de Fármacos , Nanopartículas , Paclitaxel , Neoplasias Pancreáticas , Dióxido de Silício , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Dióxido de Silício/química , Humanos , Animais , Paclitaxel/farmacologia , Paclitaxel/administração & dosagem , Nanopartículas/química , Linhagem Celular Tumoral , Calpaína/metabolismo , Portadores de Fármacos/química , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos , Porosidade , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Camundongos Nus , Feminino
2.
Biol Open ; 11(2)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35229875

RESUMO

Genetic manipulation of primary lymphocytes is crucial for both clinical purposes and fundamental research. Despite their broad use, we encountered a paucity of data on systematic comparison and optimization of retroviral vectors, the workhorses of genetic modification of primary lymphocytes. Here, we report the construction and validation of a versatile range of retroviral expression vectors. These vectors can be used for the knockdown or overexpression of genes of interest in primary human and murine lymphocytes, in combination with a wide choice of selection and reporter strategies. By streamlining the vector backbone and insert design, these publicly available vectors allow easy interchangeability of the independent building blocks, such as different promoters, fluorescent proteins, surface markers and antibiotic resistance cassettes. We validated these vectors and tested the optimal promoters for in vitro and in vivo overexpression and knockdown of the murine T cell antigen receptor. By publicly sharing these vectors and the data on their optimization, we aim to facilitate genetic modification of primary lymphocytes for researchers entering this field.


Assuntos
Vetores Genéticos , Retroviridae , Animais , Vetores Genéticos/genética , Humanos , Linfócitos , Camundongos , Regiões Promotoras Genéticas , Retroviridae/genética
3.
EJHaem ; 2(4): 685-699, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35845214

RESUMO

All irreversible Bruton tyrosine kinase (Btk) inhibitors including ibrutinib and acalabrutinib induce platelet dysfunction and increased bleeding risk. New reversible Btk inhibitors were developed, like MK-1026. The mechanism underlying increased bleeding tendency with Btk inhibitors remains unclear. We investigated the effects of ibrutinib, acalabrutinib and MK-1026 on platelet function in healthy volunteers, patients and Btk-deficient mice, together with off-target effects on tyrosine kinase phosphorylation. All inhibitors suppressed GPVI- and CLEC-2-mediated platelet aggregation, activation and secretion in a dose-dependent manner. Only ibrutinib inhibited thrombus formation on vWF-co-coated surfaces, while on collagen this was not affected. In blood from Btk-deficient mice, collagen-induced thrombus formation under flow was reduced, but preincubation with either inhibitor was without additional effects. MK-1026 showed less off-target effects upon GPVI-induced TK phosphorylation as compared to ibrutinib and acalabrutinib. In ibrutinib-treated patients, GPVI-stimulated platelet activation, and adhesion on vWF-co-coated surfaces were inhibited, while CLEC-2 stimulation induced variable responses. The dual inhibition of GPVI and CLEC-2 signalling by Btk inhibitors might account for the increased bleeding tendency, with ibrutinib causing more high-grade bleedings due to additional inhibition of platelet-vWF interaction. As MK-1026 showed less off-target effects and only affected activation of isolated platelets, it might be promising for future treatment.

5.
Oncotarget ; 9(62): 32010-32023, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30174793

RESUMO

Protease activated receptor-1 (PAR1) expression is associated with disease progression and overall survival in a variety of cancers. However, the importance of tumor cell PAR1 in pancreatic ductal adenocarcinomas (PDAC) remains unexplored. Utilizing orthotopic models with wild type and PAR1-targeted PDAC cells, we show that tumor cell PAR1 negatively affects PDAC growth, yet promotes metastasis. Mechanistically, we show that tumor cell-specific PAR1 expression correlates with mesenchymal signatures in PDAC and that PAR1 is linked to the maintenance of a partial mesenchymal cell state. Indeed, loss of PAR1 expression results in well-differentiated pancreatic tumors in vivo, with enhanced epithelial characteristics both in vitro and in vivo. Taken together, we have identified a novel growth inhibitory role of PAR1 in PDAC, which is linked to the induction, and maintenance of a mesenchymal-like phenotype. The recognition that PAR1 actively limits pancreatic cancer cell growth suggest that the contributions of PAR1 to tumor growth differ between cancers of epithelial origin and that its targeting should be applied with care.

6.
Anticancer Drugs ; 22(3): 223-33, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21263311

RESUMO

Betulinic acid (BetA) is a plant-derived pentacyclic triterpenoid with potent anticancer capacity that targets the mitochondrial pathway of apoptosis. BetA has a broad efficacy in vitro against prevalent cancer types, including lung, colorectal, prostate, cervix and breast cancer, melanomas, neuroblastomas, and leukemias. The cytotoxic effects of the compound against healthy cells are minimal, rendering BetA a promising potential anticancer drug. However, because of the weak hydrosolubility of BetA, it has been difficult to study its efficacy in vivo and a pharmaceutical formulation is not yet available. We report the development of a liposome formulation of BetA and show its successful application in mice. Large liposomes, assembled without cholesterol to reduce their rigidity, efficiently incorporated BetA. Nude mice xenografted with human colon and lung cancer tumors were treated intravenously with the BetA-containing liposomes. Tumor growth was reduced to more than 50% compared with the control treatment, leading to an enhanced survival of the mice. Oral administration of the liposomal formulation of BetA also slowed tumor growth. Any signs of systemic toxicity caused by BetA treatment were absent. Thus, liposomes are an efficient formulation vehicle for BetA, enabling its preclinical development as a nontoxic compound for the treatment of cancers.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias do Colo/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Neoplasias Pulmonares/tratamento farmacológico , Triterpenos/administração & dosagem , Administração Oral , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Estabilidade de Medicamentos , Feminino , Humanos , Injeções Intravenosas , Lipossomos/química , Pulmão/patologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Triterpenos Pentacíclicos , Rodaminas , Triterpenos/química , Triterpenos/toxicidade , Ácido Betulínico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...