Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 105(5-1): 054406, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35706301

RESUMO

Living cells can measure chemical concentrations with remarkable accuracy, even though these measurements are inherently noisy due to the stochastic binding of the ligand to the receptor. A widely used mechanism for reducing the sensing error is to increase the effective number of measurements via receptor time integration. This mechanism is implemented via the signaling network downstream of the receptor, yet how it is implemented optimally given constraints on cellular resources such as protein copies and time remains unknown. To address this question, we employ our sampling framework [Govern and ten Wolde, Proc. Natl. Acad. Sci. USA 111, 17486 (2014)PNASA60027-842410.1073/pnas.1411524111] and extend it here to time-varying ligand concentrations. This framework starts from the observation that the signaling network implements the mechanism of time integration by discretely sampling the ligand-binding state of the receptor and storing these states into chemical modification states of the readout molecules downstream. It reveals that the sensing error has two distinct contributions: a sampling error, which is determined by the number of samples, their independence, and their accuracy, and a dynamical error, which depends on the timescale that these samples are generated. We test our previously identified design principle, which states that in an optimally designed system the number of receptors and their integration time, which determine the number of independent concentration measurements at the receptor level, equals the number of readout proteins, which store these measurements. We show that this principle is robust to the dynamics of the input and the relative costs of the receptor and readout proteins: these resources are fundamental and cannot compensate each other.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(2 Pt 1): 021913, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23005791

RESUMO

Using a Gaussian model, we study the transmission of time-varying biochemical signals through feed-forward motifs and diamond motifs. To this end, we compute the frequency dependence of the gain, the noise, as well as their ratio, the gain-to-noise ratio, which measures how reliably a network transmits signals at different frequencies. We find that both coherent and incoherent feed-forward motifs can either act as low-pass or high-pass filters for information: The frequency dependence of the gain-to-noise ratio increases or decreases with increasing frequency, respectively. Our analysis of diamond motifs reveals that cooperative activation of the output component can increase the gain-to-noise ratio. This means that from the perspective of information transmission, it can be beneficial to split the input signal in two and recombine the two propagated signals at the output. Cooperative activation can be implemented via the formation of homo- or heteromultimers that then bind and activate the output component or via the binding of individual molecules of the intermediate species to the output component.


Assuntos
Retroalimentação Fisiológica , Modelos Biológicos , Transdução de Sinais , Distribuição Normal
3.
J Mol Biol ; 342(5): 1379-90, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15364567

RESUMO

We have performed a statistical analysis of the spatial distribution of operons along the DNA in the transcriptional regulation network of Escherichia coli. The analysis reveals that pairs of operons that regulate each other and those that are co-regulated tend to lie much closer to one another than would be expected for a random network. Moreover, these pairs of operons tend to be transcribed in diverging directions. This spatial arrangement of operons allows the upstream regulatory domains to overlap and interfere with each other and our analysis also demonstrates the statistical significance of this motif of overlapping operons. Overlapping operons afford additional regulatory control, such as the correlated or anticorrelated expression of operons. We show by a mean-field analysis of a feed-forward loop that overlapping operons can drastically enhance the performance of gene regulatory networks. Our results suggest that regulatory control can provide a selective pressure that drives operons together in the course of evolution.


Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Genes Reguladores/genética , Óperon/genética , Transcrição Gênica/genética , DNA Bacteriano , Interpretação Estatística de Dados , Demografia
4.
Science ; 277(5334): 1975-8, 1997 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-9302288

RESUMO

Numerical simulations of homogeneous crystal nucleation with a model for globular proteins with short-range attractive interactions showed that the presence of a metastable fluid-fluid critical point drastically changes the pathway for the formation of a crystal nucleus. Close to this critical point, the free-energy barrier for crystal nucleation is strongly reduced and hence, the crystal nucleation rate increases by many orders of magnitude. Because the location of the metastable critical point can be controlled by changing the composition of the solvent, the present work suggests a systematic approach to promote protein crystallization.


Assuntos
Proteínas/química , Coloides , Simulação por Computador , Cristalização , Método de Monte Carlo , Solventes , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...