Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 24(15)2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31357567

RESUMO

A group of prenyltransferases catalyze chain elongation of farnesyl diphosphate (FPP) to designated lengths via consecutive condensation reactions with specific numbers of isopentenyl diphosphate (IPP). cis-Prenyltransferases, which catalyze cis-double bond formation during IPP condensation, usually synthesize long-chain products as lipid carriers to mediate peptidoglycan biosynthesis in prokaryotes and protein glycosylation in eukaryotes. Unlike only one or two cis-prenyltransferases in bacteria, yeast, and animals, plants have several cis-prenyltransferases and their functions are less understood. As reported here, a cis-prenyltransferase from Lilium longiflorum anther, named LLA66, was expressed in Saccharomyces cerevisiae and characterized to produce C40/C45 products without the capability to restore the growth defect from Rer2-deletion, although it was phylogenetically categorized as a long-chain enzyme. Our studies suggest that evolutional mutations may occur in the plant cis-prenyltransferase to convert it into a shorter-chain enzyme.


Assuntos
Lilium/química , Lilium/enzimologia , Transferases/química , Transferases/metabolismo , Lilium/classificação , Lilium/genética , Modelos Moleculares , Filogenia , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Transferases/genética
2.
Biochemistry ; 55(31): 4366-74, 2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27428767

RESUMO

Some trans-prenyltransferases, such as long-chain C40 octaprenyl diphosphate synthase (OPPS), short-chain C15 farnesyl diphosphate synthase (FPPS), and C20 geranylgeranyl diphosphate synthase (GGPPS), are important drug targets. These enzymes catalyze chain elongation of FPP or geranyl diphosphate (GPP) through condensation reactions with isopentenyl diphosphate (IPP), forming designated numbers of trans-double bonds in the final products. To facilitate drug discovery, we report here a sensitive and reliable fluorescence-based assay for monitoring their activities in real time. MANT-O-GPP, a fluorescent analogue of FPP, was used as an alternative substrate and converted by the wild-type OPPS and the engineered FPPS and GGPPS into sufficiently long products with enhanced fluorescence intensities. This fluorescence probe was used to reveal the inhibitory mechanism of zoledronate, a bisphosphonate drug that targets human FPPS and possibly GGPPS.


Assuntos
Dimetilaliltranstransferase/antagonistas & inibidores , Dimetilaliltranstransferase/química , Corantes Fluorescentes/química , Sondas Moleculares/química , Fosfatos de Poli-Isoprenil/química , Sesquiterpenos/química , Alquil e Aril Transferases/antagonistas & inibidores , Alquil e Aril Transferases/química , Alquil e Aril Transferases/genética , Substituição de Aminoácidos , Dimetilaliltranstransferase/genética , Difosfonatos/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Farnesiltranstransferase/antagonistas & inibidores , Farnesiltranstransferase/química , Farnesiltranstransferase/genética , Geraniltranstransferase/antagonistas & inibidores , Geraniltranstransferase/química , Geraniltranstransferase/genética , Humanos , Imidazóis/farmacologia , Cinética , Modelos Moleculares , Técnicas de Sonda Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Especificidade por Substrato , Ácido Zoledrônico
3.
J Clin Invest ; 123(9): 3861-75, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23979166

RESUMO

Caspase-3 downregulation (CASP3/DR) in tumors frequently confers resistance to cancer therapy and is significantly correlated with a poor prognosis in cancer patients. Because CASP3/DR cancer cells rely heavily on the activity of caspase-7 (CASP7) to initiate apoptosis, inhibition of activated CASP7 (p19/p12-CASP7) by X-linked inhibitor of apoptosis protein (XIAP) is a potential mechanism by which apoptosis is prevented in those cancer cells. Here, we identify the pocket surrounding the Cys246 residue of p19/p12-CASP7 as a target for the development of a protein-protein interaction (PPI) inhibitor of the XIAP:p19/p12-CASP7 complex. Interrupting this PPI directly triggered CASP7-dependent apoptotic signaling that bypassed the activation of the apical caspases and selectively killed CASP3/DR malignancies in vitro and in vivo without adverse side effects in nontumor cells. Importantly, CASP3/DR combined with p19/p12-CASP7 accumulation correlated with the aggressive evolution of clinical malignancies and a poor prognosis in cancer patients. Moreover, targeting of this PPI effectively killed cancer cells with multidrug resistance due to microRNA let-7a-1-mediated CASP3/DR and resensitized cancer cells to chemotherapy-induced apoptosis. These findings not only provide an opportunity to treat CASP3/DR malignancies by targeting the XIAP:p19/p12-CASP7 complex, but also elucidate the molecular mechanism underlying CASP3/DR in cancers.


Assuntos
Antineoplásicos/farmacologia , Caspase 3/deficiência , Caspase 7/metabolismo , Resistencia a Medicamentos Antineoplásicos , Lisina/análogos & derivados , Lisina/farmacologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Alquilação , Sequência de Aminoácidos , Animais , Apoptose , Neoplasias da Mama/enzimologia , Neoplasias da Mama/mortalidade , Caspase 3/genética , Neoplasias do Colo/enzimologia , Neoplasias do Colo/mortalidade , Ativação Enzimática , Feminino , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/mortalidade , Células MCF-7 , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mapas de Interação de Proteínas , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Biochemistry ; 52(16): 2783-92, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23534508

RESUMO

Previously we showed that yeast geranylgeranyl diphosphate synthase (GGPPS) becomes an inactive monomer when the first N-terminal helix involved in dimerization is deleted. This raises questions regarding why dimerization is required for GGPPS activity and which amino acids in the dimer interface are essential for dimerization-mediated activity. According to the GGPPS crystal structure, three amino acids (N101, N104, and Y105) located in the helix F of one subunit are near the active site of the other subunit. As presented here, when these residues were replaced individually with Ala caused insignificant activity changes, N101A/Y105A and N101A/N104A but not N104A/Y105A showed remarkably decreased k(cat) values (200-250-fold). The triple mutant N101A/N104A/Y105A displayed no detectable activity, although dimer was retained in these mutants. Because N101 and Y105 form H-bonds with H139 and R140 in the other subunit, respectively, we generated H139A/R140A double mutant and found it was inactive and became monomeric. Therefore, the multiple mutations apparently influence the integrity of the catalytic site due to the missing H-bonding network. Moreover, Met111, also on the highly conserved helix F, was necessary for dimer formation and enzyme activity. When Met111 was replaced with Glu, the negative-charged repulsion converted half of the dimer into a monomer. In conclusion, the H-bonds mainly through N101 for maintaining substrate binding stability and the hydrophobic interaction of M111 in dimer interface are essential for activity of yeast GGPPS.


Assuntos
Farnesiltranstransferase/química , Farnesiltranstransferase/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , Domínio Catalítico , Farnesiltranstransferase/genética , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
5.
Mol Membr Biol ; 29(7): 267-73, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22471620

RESUMO

A group of prenyltransferases produce linear lipids by catalyzing consecutive condensation reactions of farnesyl diphosphate (FPP) with specific numbers of isopentenyl diphosphate (IPP), a common building block of isoprenoid compounds. Depending on the stereochemistry of the double bonds formed during IPP condensation, these prenyltransferases are categorized as cis- and trans-types. Undecaprenyl diphosphate synthase (UPPS) that catalyzes chain elongation of FPP by consecutive condensation reactions with eight IPP, to form C55 lipid carrier for bacterial cell wall biosynthesis, serves as a model for understanding cis-prenyltransferases. In this review, the current knowledge in UPPS kinetics, mechanisms, structures, and inhibitors is summarized.


Assuntos
Alquil e Aril Transferases , Bactérias/metabolismo , Proteínas de Bactérias , Parede Celular/metabolismo , Dimetilaliltranstransferase , Fosfatos de Poli-Isoprenil , Sesquiterpenos , Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Bactérias/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Dimetilaliltranstransferase/química , Dimetilaliltranstransferase/metabolismo , Hemiterpenos/biossíntese , Hemiterpenos/química , Compostos Organofosforados/química , Fosfatos de Poli-Isoprenil/biossíntese , Fosfatos de Poli-Isoprenil/química , Estrutura Terciária de Proteína , Sesquiterpenos/química , Relação Estrutura-Atividade
6.
Bioorg Chem ; 43: 51-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21993493

RESUMO

Isoprenoids are an intensive group of compounds made from isopentenyl diphosphate (IPP), catalyzed by prenyltransferases such as farnesyl diphosphate (FPP) cyclases, squalene synthase, protein farnesyltransferases and geranylgeranyltransferases, aromatic prenyltransferases as well as a group of prenyltransferases (cis- and trans-types) catalyzing consecutive condensation reactions of FPP with specific numbers of IPP to generate linear products with designate chain lengths. These prenyltransferases play significant biological functions and some of them are drug targets. In this review, structures, mechanisms, and inhibitors of a cis-prenyltransferase, undecaprenyl diphosphate synthase (UPPS) that mediates bacterial peptidoglycan biosynthesis, are summarized for comparison with the most related trans-prenyltransferases and other prenyltransferases.


Assuntos
Alquil e Aril Transferases/metabolismo , Peptidoglicano/biossíntese , Transferases/metabolismo , Alquil e Aril Transferases/antagonistas & inibidores , Bactérias/enzimologia , Hemiterpenos/metabolismo , Compostos Organofosforados/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Estrutura Terciária de Proteína , Sesquiterpenos/metabolismo , Terpenos/química , Terpenos/metabolismo , Transferases/antagonistas & inibidores
7.
Anal Biochem ; 417(1): 136-41, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21704016

RESUMO

Farnesyl pyrophosphate (FPP) is a common substrate for a variety of prenyltransferases for synthesizing isoprenoid compounds. In this study, (2E,6E)-8-O-(N-methyl-2-aminobenzoyl)-3,7-dimethyl-2,6-octandien-1-pyrophosphate (MANT-O-GPP), a fluorescent analog of FPP, was synthesized and demonstrated as a satisfactory substrate for Escherichia coli undecaprenyl pyrophosphate synthase (UPPS) with a K(m) of 1.5 µM and a k(cat) of 1.2s(-1) based on [(14)C]IPP consumption. Interesting, we found that its emission fluorescence intensity at 420 nm increased remarkably during chain elongation, thereby useful for real-time monitoring kinetics of UPPS to yield a K(m) of 1.1 µM and a k(cat) of 1.0 s(-1), consistent with those measured using radiolabeled substrate. Using this assay, the IC(50) of a known UPPS inhibitor farnesyl thiopyrophosphate (FsPP) was confirmed. Our studies provide a convenient and environmentally friendly alternative for kinetics and inhibition studies on UPPS drug target.


Assuntos
Alquil e Aril Transferases/metabolismo , Bioquímica/métodos , Corantes Fluorescentes/metabolismo , Biocatálise , Radioisótopos de Carbono , Concentração Inibidora 50 , Cinética , Fosfatos de Poli-Isoprenil/síntese química , Fosfatos de Poli-Isoprenil/química , Fosfatos de Poli-Isoprenil/metabolismo , Solventes , Espectrometria de Fluorescência , Especificidade por Substrato , Fatores de Tempo , Titulometria
8.
Bioresour Technol ; 102(4): 3973-6, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21169014

RESUMO

A ß-glucosidase from Clostridium cellulovorans (CcBG) was fused with one of three different types of cellulases from Clostridium thermocellum, including a cellulosomal endoglucanase CelD (CtCD), a cellulosomal exoglucanase CBHA (CtCA) and a non-cellulosomal endoglucanase Cel9I (CtC9I). Six bifunctional enzymes were constructed with either ß-glucosidase or cellulase in the upstream. CtCD-CcBG showed the favorable specific activities on phosphoric acid swollen cellulose (PASC), an amorphous cellulose, with more glucose production (2 folds) and less cellobiose accumulation (3 folds) when compared with mixture of the single enzymes. Moreover, CtCD-CcBG had significantly improved thermal stability with a melting temperature (T(m)) of 10.9°C higher than that of CcBG (54.5°C) based on the CD unfolding experiments. This bifunctional enzyme is thus useful in industrial application to convert cellulose to glucose.


Assuntos
Clostridium cellulovorans/enzimologia , Glucose/química , beta-Glucosidase/química , Biocombustíveis , Biomassa , Celulase/química , Celulose/química , Clostridium thermocellum/enzimologia , Escherichia coli/enzimologia , Concentração de Íons de Hidrogênio , Hidrólise , Proteínas Recombinantes/química , Temperatura
9.
Biochem Biophys Res Commun ; 400(4): 758-62, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20828539

RESUMO

Undecaprenyl pyrophosphate synthase (UPPS) is a cis-type prenyltransferases which catalyzes condensation reactions of farnesyl diphosphate (FPP) with eight isopentenyl pyrophosphate (IPP) units to generate C(55) product. In this study, we used two analogues of FPP, 2-fluoro-FPP and [1,1-(2)H(2)]FPP, to probe the reaction mechanism of Escherichia coli UPPS. The reaction rate of 2-fluoro-FPP with IPP under single-turnover condition is similar to that of FPP, consistent with the mechanism without forming a farnesyl carbocation intermediate. Moreover, the deuterium secondary KIE of 0.985±0.022 measured for UPPS reaction using [1,1-(2)H(2)]FPP supports the associative transition state. Unlike the sequential mechanism used by trans-prenyltransferases, our data demonstrate E. coli UPPS utilizes the concerted mechanism.


Assuntos
Alquil e Aril Transferases/metabolismo , Escherichia coli/enzimologia , Hemiterpenos/metabolismo , Compostos Organofosforados/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Sesquiterpenos/metabolismo , Transferases/metabolismo , Catálise , Especificidade por Substrato
10.
Plant Cell ; 22(2): 454-67, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20139160

RESUMO

Terpenes (isoprenoids), derived from isoprenyl pyrophosphates, are versatile natural compounds that act as metabolism mediators, plant volatiles, and ecological communicators. Divergent evolution of homomeric prenyltransferases (PTSs) has allowed PTSs to optimize their active-site pockets to achieve catalytic fidelity and diversity. Little is known about heteromeric PTSs, particularly the mechanisms regulating formation of specific products. Here, we report the crystal structure of the (LSU . SSU)(2)-type (LSU/SSU = large/small subunit) heterotetrameric geranyl pyrophosphate synthase (GPPS) from mint (Mentha piperita). The LSU and SSU of mint GPPS are responsible for catalysis and regulation, respectively, and this SSU lacks the essential catalytic amino acid residues found in LSU and other PTSs. Whereas no activity was detected for individually expressed LSU or SSU, the intact (LSU . SSU)(2) tetramer produced not only C(10)-GPP at the beginning of the reaction but also C(20)-GGPP (geranylgeranyl pyrophosphate) at longer reaction times. The activity for synthesizing C(10)-GPP and C(20)-GGPP, but not C(15)-farnesyl pyrophosphate, reflects a conserved active-site structure of the LSU and the closely related mustard (Sinapis alba) homodimeric GGPPS. Furthermore, using a genetic complementation system, we showed that no C(20)-GGPP is produced by the mint GPPS in vivo. Presumably through protein-protein interactions, the SSU remodels the active-site cavity of LSU for synthesizing C(10)-GPP, the precursor of volatile C(10)-monoterpenes.


Assuntos
Ligases/metabolismo , Mentha piperita/enzimologia , Fosfatos de Poli-Isoprenil/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Ligases/química , Modelos Moleculares , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...